Wood's anomalies and surface waves in the~problem of scattering by a~periodic boundary.~I
Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 111-141
Voir la notice de l'article provenant de la source Math-Net.Ru
The solution of the problem of diffraction of an acoustic plane wave by a periodic boundary for frequencies close to threshold values is studied. Wood's well-known experiments show that deviations from the threshold frequency values by a small quantity bring about drastic changes in the diffraction pattern. The asymptotic formula with respect to the small parameter $\varepsilon$ is obtained for the corresponding scattering matrix.
@article{SM_1999_190_1_a3,
author = {I. V. Kamotskii and S. A. Nazarov},
title = {Wood's anomalies and surface waves in the~problem of scattering by a~periodic {boundary.~I}},
journal = {Sbornik. Mathematics},
pages = {111--141},
publisher = {mathdoc},
volume = {190},
number = {1},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_1_a3/}
}
TY - JOUR AU - I. V. Kamotskii AU - S. A. Nazarov TI - Wood's anomalies and surface waves in the~problem of scattering by a~periodic boundary.~I JO - Sbornik. Mathematics PY - 1999 SP - 111 EP - 141 VL - 190 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1999_190_1_a3/ LA - en ID - SM_1999_190_1_a3 ER -
I. V. Kamotskii; S. A. Nazarov. Wood's anomalies and surface waves in the~problem of scattering by a~periodic boundary.~I. Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 111-141. http://geodesic.mathdoc.fr/item/SM_1999_190_1_a3/