Wood's anomalies and surface waves in the~problem of scattering by a~periodic boundary.~I
Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 111-141

Voir la notice de l'article provenant de la source Math-Net.Ru

The solution of the problem of diffraction of an acoustic plane wave by a periodic boundary for frequencies close to threshold values is studied. Wood's well-known experiments show that deviations from the threshold frequency values by a small quantity bring about drastic changes in the diffraction pattern. The asymptotic formula with respect to the small parameter $\varepsilon$ is obtained for the corresponding scattering matrix.
@article{SM_1999_190_1_a3,
     author = {I. V. Kamotskii and S. A. Nazarov},
     title = {Wood's anomalies and surface waves in the~problem of scattering by a~periodic {boundary.~I}},
     journal = {Sbornik. Mathematics},
     pages = {111--141},
     publisher = {mathdoc},
     volume = {190},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_1_a3/}
}
TY  - JOUR
AU  - I. V. Kamotskii
AU  - S. A. Nazarov
TI  - Wood's anomalies and surface waves in the~problem of scattering by a~periodic boundary.~I
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 111
EP  - 141
VL  - 190
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_1_a3/
LA  - en
ID  - SM_1999_190_1_a3
ER  - 
%0 Journal Article
%A I. V. Kamotskii
%A S. A. Nazarov
%T Wood's anomalies and surface waves in the~problem of scattering by a~periodic boundary.~I
%J Sbornik. Mathematics
%D 1999
%P 111-141
%V 190
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1999_190_1_a3/
%G en
%F SM_1999_190_1_a3
I. V. Kamotskii; S. A. Nazarov. Wood's anomalies and surface waves in the~problem of scattering by a~periodic boundary.~I. Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 111-141. http://geodesic.mathdoc.fr/item/SM_1999_190_1_a3/