Wood's anomalies and surface waves in the problem of scattering by a periodic boundary. I
Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 111-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solution of the problem of diffraction of an acoustic plane wave by a periodic boundary for frequencies close to threshold values is studied. Wood's well-known experiments show that deviations from the threshold frequency values by a small quantity bring about drastic changes in the diffraction pattern. The asymptotic formula with respect to the small parameter $\varepsilon$ is obtained for the corresponding scattering matrix.
@article{SM_1999_190_1_a3,
     author = {I. V. Kamotskii and S. A. Nazarov},
     title = {Wood's anomalies and surface waves in the~problem of scattering by a~periodic {boundary.~I}},
     journal = {Sbornik. Mathematics},
     pages = {111--141},
     year = {1999},
     volume = {190},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_1_a3/}
}
TY  - JOUR
AU  - I. V. Kamotskii
AU  - S. A. Nazarov
TI  - Wood's anomalies and surface waves in the problem of scattering by a periodic boundary. I
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 111
EP  - 141
VL  - 190
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_1_a3/
LA  - en
ID  - SM_1999_190_1_a3
ER  - 
%0 Journal Article
%A I. V. Kamotskii
%A S. A. Nazarov
%T Wood's anomalies and surface waves in the problem of scattering by a periodic boundary. I
%J Sbornik. Mathematics
%D 1999
%P 111-141
%V 190
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1999_190_1_a3/
%G en
%F SM_1999_190_1_a3
I. V. Kamotskii; S. A. Nazarov. Wood's anomalies and surface waves in the problem of scattering by a periodic boundary. I. Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 111-141. http://geodesic.mathdoc.fr/item/SM_1999_190_1_a3/

[1] Solimeno S., Krozinyani B., Di Porto P., Difraktsiya i volnovodnoe rasprostranenie opticheskogo izlucheniya, Mir, M., 1989

[2] Shestopalov V. P., Kirilenko A. A., Maslov S. A. i dr., Rezonansnoe rasseyanie voln, Naukova dumka, Kiev, 1986 | Zbl

[3] Zalipaev V. V., Popov M. M., “Anomalii Vuda v zadache difraktsii ploskoi volny na gladkoi periodicheskoi granitse”, Matematicheskie voprosy rasprostraneniya voln, Zap. nauchn. sem. LOMI, 186, LOMI, L., 1990, 87–100 | MR

[4] Wilcox C., Scattering theory for diffraction gratings, Springer-Verlag, Berlin, 1980 | MR

[5] Nazarov S. A., Plamenevskii B. A., “Ob usloviyakh izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Dokl. AN SSSR, 311:3 (1990), 532–536 | MR | Zbl

[6] Nazarov S. A., Plamenevskii B. A., “Printsipy izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Problemy matem. fiziki, 12 (1991), 88–124

[7] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[8] Nazarov S. A., Plamenevsky B. A., Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin, 1994 | MR

[9] Agnon S., Nirenberg L., “Properties of solution of ordinary differential equations in Banach spaces”, Comm. Pure Appl. Math., 16 (1996), 11–239 | MR

[10] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16, URSS, M., 1967, 209–292 | MR | Zbl

[11] Pazy A., “Asymptotic expansions of solutions of ordinary differential equations in Hilbert space”, Arch. Rational Mech. Anal., 78:1 (1967), 29–58 | MR

[12] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Gëldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 1978, no. 81, 25–82 | MR | Zbl

[13] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 1977, no. 76, 29–60 | MR | Zbl

[14] Nazarov S. A., Plamenevskii B. A., “Samosopryazhennye zadachi s usloviyami izlucheniya na rebrakh granitsy”, Algebra i analiz, 4:3 (1992), 196–225 | MR | Zbl

[15] Nazarov S. A., Plamenevskii B. A., “Samosopryazhennye ellipticheskie zadachi: operatory rasseyaniya i polyarizatsii na rebrakh”, Algebra i analiz, 6:4 (1994), 157–186 | MR

[16] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Ob asimptotike reshenii ellipticheskikh kraevykh zadach pri neregulyarnom vozmuschenii oblasti”, Problemy matem. analiza, 8 (1986), 72–153 | MR

[17] Mazya V. G., Nazarov S. A., Plamenevskii B. A., Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnykh vozmuscheniyakh oblasti, Izd-vo TGU, Tbilisi, 1981 | MR | Zbl

[18] Mazja W. G., Nasarov S. A., Plamenewski B. A., Asymptotishe Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, V. 1, Akademie-Verlag, Berlin, 1990

[19] Nazarov S. A., Shpekovius-Noigebauer M., “Approksimatsiya neogranichennykh oblastei ogranichennymi. Kraevye zadachi dlya operatora Lame”, Algebra i analiz, 1996, no. 8, 229–268 | MR | Zbl

[20] Ursell F., “Trapping modes in the theory of surface waves”, Proc. Camb. Phil. Soc., 47 (1951), 347–358 | DOI | MR | Zbl

[21] Jones D. S., “The eigenvalues of $\nabla^2u+\lambda u=0$ when the boundary conditions are given on semiinfinite domains”, Proc. Camb. Phil. Soc., 49 (1951), 668–684 | DOI | MR

[22] Evans D. V., Linton C. M., “Trapped modes in open channels”, J. Fluid. Mech., 225 (1991), 153–175 | DOI | MR | Zbl

[23] Evans D. V., “Trapped acoustic modes”, IMA J. Appl. Math., 49 (1992), 45–60 | DOI | MR

[24] Linton C. M., Evans D. V., “Integral equations for a class of problems concerning obstacles in waveguides”, J. Fluid. Mech., 245 (1992), 349–365 | DOI | MR | Zbl

[25] Evans D. V., Levitin M., Vassiliev D., “Existance theorems for trapped modes”, J. Fluid. Mech., 261 (1994), 21–31 | DOI | MR | Zbl

[26] Popov A. N., “O suschestvovanii sobstvennykh kolebanii rezonatora, otkrytogo v volnovod”, ZhTF, 56:10 (1986), 1916–1922

[27] Gotlib Yu. V., “Helmholtz equation solutions concentrated near periodical boundary”, Day on diffraction'97, Thesis, Sankt-Peterburg

[28] Babich V. M., “O teoreme suschestvovaniya resheniya zadach Dirikhle i Neimana dlya uravneniya Gelmgoltsa v kvaziperiodicheskom sluchae”, Sib. matem. zhurn., 29:2 (1988), 3–9 | MR

[29] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR