@article{SM_1999_190_1_a2,
author = {A. O. Ivanov and A. A. Tuzhilin},
title = {Geometry of convex polygons and locally minimal binary trees spanning these polygons},
journal = {Sbornik. Mathematics},
pages = {71--110},
year = {1999},
volume = {190},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_1_a2/}
}
A. O. Ivanov; A. A. Tuzhilin. Geometry of convex polygons and locally minimal binary trees spanning these polygons. Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 71-110. http://geodesic.mathdoc.fr/item/SM_1999_190_1_a2/
[1] Hwang F. K., Richards D., Winter P., The Steiners tree problem, North-Holland, Amsterdam, 1992 | MR | Zbl
[2] Jarnik V., Kössler M., “Sur les graphes minima, contenant $n$ points donnes”, Casopis Mat. Fys., 63 (1934), 223–235 | Zbl
[3] Ivanov A. O., Tuzhilin A. A., “Reshenie zadachi Shteinera dlya vypuklykh granits”, UMN, 45:2 (1990), 207–208 | MR | Zbl
[4] Ivanov A. O., Tuzhilin A. A., “Zadacha Shteinera dlya vypuklykh granits ili ploskie minimalnye seti”, Matem. sb., 182:12 (1991), 1813–1844 | MR
[5] Ivanov A. O., Tuzhilin A. A., “Geometriya minimalnykh setei i odnomernaya problema Plato”, UMN, 47:2 (1992), 53–115 | MR | Zbl
[6] Ivanov A. O., Tuzhilin A. A., “The Steiner problem for convex boundaries”, Adv. Soviet Math., 15 (1993), 15–131 | MR | Zbl
[7] Ivanov A. O., Tuzhilin A. A., Minimal networks. The Steiner problem and its generalizations, CRC Press, Boca Raton, FL, 1994 | MR | Zbl
[8] Fomenko A. T., Topologicheskie variatsionnye zadachi, Izd-vo MGU, M., 1984 | MR | Zbl
[9] Tuzhilin A. A., Fomenko A. T., Elementy geometrii i topologii minimalnykh poverkhnostei, Nauka, M., 1991 | MR
[10] Tuzhilin A. A., “Polnaya klassifikatsiya lokalno minimalnykh binarnykh derevev s pravilnoi granitsei. Sluchai skeletov”, Fundament. i prikl. matem., 2:2 (1996), 511–562 | MR | Zbl