Geometry of convex polygons and locally minimal binary trees spanning these polygons
Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 71-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In previous works the authors have obtained an effective classification of planar locally minimal binary trees with convex boundaries. The main aim of the present paper is to find more subtle restrictions on the possible structure of such trees in terms of the geometry of the given boundary set. Special attention is given to the case of quasiregular boundaries (that is, boundaries that are sufficiently close to regular ones in a certain sense). In particular, a series of quasiregular boundaries that cannot be spanned by a locally minimal binary tree is constructed.
@article{SM_1999_190_1_a2,
     author = {A. O. Ivanov and A. A. Tuzhilin},
     title = {Geometry of convex polygons and locally minimal binary trees spanning these polygons},
     journal = {Sbornik. Mathematics},
     pages = {71--110},
     year = {1999},
     volume = {190},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_1_a2/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - A. A. Tuzhilin
TI  - Geometry of convex polygons and locally minimal binary trees spanning these polygons
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 71
EP  - 110
VL  - 190
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_1_a2/
LA  - en
ID  - SM_1999_190_1_a2
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A A. A. Tuzhilin
%T Geometry of convex polygons and locally minimal binary trees spanning these polygons
%J Sbornik. Mathematics
%D 1999
%P 71-110
%V 190
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1999_190_1_a2/
%G en
%F SM_1999_190_1_a2
A. O. Ivanov; A. A. Tuzhilin. Geometry of convex polygons and locally minimal binary trees spanning these polygons. Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 71-110. http://geodesic.mathdoc.fr/item/SM_1999_190_1_a2/

[1] Hwang F. K., Richards D., Winter P., The Steiners tree problem, North-Holland, Amsterdam, 1992 | MR | Zbl

[2] Jarnik V., Kössler M., “Sur les graphes minima, contenant $n$ points donnes”, Casopis Mat. Fys., 63 (1934), 223–235 | Zbl

[3] Ivanov A. O., Tuzhilin A. A., “Reshenie zadachi Shteinera dlya vypuklykh granits”, UMN, 45:2 (1990), 207–208 | MR | Zbl

[4] Ivanov A. O., Tuzhilin A. A., “Zadacha Shteinera dlya vypuklykh granits ili ploskie minimalnye seti”, Matem. sb., 182:12 (1991), 1813–1844 | MR

[5] Ivanov A. O., Tuzhilin A. A., “Geometriya minimalnykh setei i odnomernaya problema Plato”, UMN, 47:2 (1992), 53–115 | MR | Zbl

[6] Ivanov A. O., Tuzhilin A. A., “The Steiner problem for convex boundaries”, Adv. Soviet Math., 15 (1993), 15–131 | MR | Zbl

[7] Ivanov A. O., Tuzhilin A. A., Minimal networks. The Steiner problem and its generalizations, CRC Press, Boca Raton, FL, 1994 | MR | Zbl

[8] Fomenko A. T., Topologicheskie variatsionnye zadachi, Izd-vo MGU, M., 1984 | MR | Zbl

[9] Tuzhilin A. A., Fomenko A. T., Elementy geometrii i topologii minimalnykh poverkhnostei, Nauka, M., 1991 | MR

[10] Tuzhilin A. A., “Polnaya klassifikatsiya lokalno minimalnykh binarnykh derevev s pravilnoi granitsei. Sluchai skeletov”, Fundament. i prikl. matem., 2:2 (1996), 511–562 | MR | Zbl