Geometry of convex polygons and locally minimal binary trees spanning these polygons
Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 71-110
Voir la notice de l'article provenant de la source Math-Net.Ru
In previous works the authors have obtained an effective classification of planar locally minimal binary trees with convex boundaries. The main aim of the present paper is to find more subtle restrictions on the possible structure of such trees in terms of the geometry of the given boundary set. Special attention is given to the case of quasiregular boundaries (that is, boundaries that are sufficiently close to regular ones in a certain sense). In particular, a series of quasiregular boundaries that cannot be spanned by a locally minimal binary tree is constructed.
@article{SM_1999_190_1_a2,
author = {A. O. Ivanov and A. A. Tuzhilin},
title = {Geometry of convex polygons and locally minimal binary trees spanning these polygons},
journal = {Sbornik. Mathematics},
pages = {71--110},
publisher = {mathdoc},
volume = {190},
number = {1},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_1_a2/}
}
TY - JOUR AU - A. O. Ivanov AU - A. A. Tuzhilin TI - Geometry of convex polygons and locally minimal binary trees spanning these polygons JO - Sbornik. Mathematics PY - 1999 SP - 71 EP - 110 VL - 190 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1999_190_1_a2/ LA - en ID - SM_1999_190_1_a2 ER -
A. O. Ivanov; A. A. Tuzhilin. Geometry of convex polygons and locally minimal binary trees spanning these polygons. Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 71-110. http://geodesic.mathdoc.fr/item/SM_1999_190_1_a2/