Spectral boundary value problems for the~Helmholtz equation with spectral parameter in~boundary conditions on a~non-smooth surface
Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 29-69
Voir la notice de l'article provenant de la source Math-Net.Ru
The spectral properties of four problems for the Helmholtz equation with spectral parameter in boundary or transmission conditions on a closed Lipschitz surface $S$ are studied. These problems are related to the classical integral operators of potential type on $S$ for the Helmholtz equation. They have been studied before in the case when $S$ is infinitely smooth. It is shown that the most important properties of eigenvalues and root functions hold also for Lipschitz surfaces $S$. The machinery of potential theory in Lipschitz domains and of spectral theory is used in the proofs.
@article{SM_1999_190_1_a1,
author = {M. S. Agranovich and R. Mennicken},
title = {Spectral boundary value problems for {the~Helmholtz} equation with spectral parameter in~boundary conditions on a~non-smooth surface},
journal = {Sbornik. Mathematics},
pages = {29--69},
publisher = {mathdoc},
volume = {190},
number = {1},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_1_a1/}
}
TY - JOUR AU - M. S. Agranovich AU - R. Mennicken TI - Spectral boundary value problems for the~Helmholtz equation with spectral parameter in~boundary conditions on a~non-smooth surface JO - Sbornik. Mathematics PY - 1999 SP - 29 EP - 69 VL - 190 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1999_190_1_a1/ LA - en ID - SM_1999_190_1_a1 ER -
%0 Journal Article %A M. S. Agranovich %A R. Mennicken %T Spectral boundary value problems for the~Helmholtz equation with spectral parameter in~boundary conditions on a~non-smooth surface %J Sbornik. Mathematics %D 1999 %P 29-69 %V 190 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1999_190_1_a1/ %G en %F SM_1999_190_1_a1
M. S. Agranovich; R. Mennicken. Spectral boundary value problems for the~Helmholtz equation with spectral parameter in~boundary conditions on a~non-smooth surface. Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 29-69. http://geodesic.mathdoc.fr/item/SM_1999_190_1_a1/