Spectral boundary value problems for the Helmholtz equation with spectral parameter in boundary conditions on a non-smooth surface
Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 29-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The spectral properties of four problems for the Helmholtz equation with spectral parameter in boundary or transmission conditions on a closed Lipschitz surface $S$ are studied. These problems are related to the classical integral operators of potential type on $S$ for the Helmholtz equation. They have been studied before in the case when $S$ is infinitely smooth. It is shown that the most important properties of eigenvalues and root functions hold also for Lipschitz surfaces $S$. The machinery of potential theory in Lipschitz domains and of spectral theory is used in the proofs.
@article{SM_1999_190_1_a1,
     author = {M. S. Agranovich and R. Mennicken},
     title = {Spectral boundary value problems for {the~Helmholtz} equation with spectral parameter in~boundary conditions on a~non-smooth surface},
     journal = {Sbornik. Mathematics},
     pages = {29--69},
     year = {1999},
     volume = {190},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_1_a1/}
}
TY  - JOUR
AU  - M. S. Agranovich
AU  - R. Mennicken
TI  - Spectral boundary value problems for the Helmholtz equation with spectral parameter in boundary conditions on a non-smooth surface
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 29
EP  - 69
VL  - 190
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_1_a1/
LA  - en
ID  - SM_1999_190_1_a1
ER  - 
%0 Journal Article
%A M. S. Agranovich
%A R. Mennicken
%T Spectral boundary value problems for the Helmholtz equation with spectral parameter in boundary conditions on a non-smooth surface
%J Sbornik. Mathematics
%D 1999
%P 29-69
%V 190
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1999_190_1_a1/
%G en
%F SM_1999_190_1_a1
M. S. Agranovich; R. Mennicken. Spectral boundary value problems for the Helmholtz equation with spectral parameter in boundary conditions on a non-smooth surface. Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 29-69. http://geodesic.mathdoc.fr/item/SM_1999_190_1_a1/

[1] Voitovich N. N., Katsenelenbaum B. Z., Sivov A. N., Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977 | MR | Zbl

[2] Agranovich M. S., “Spektralnye svoistva zadach difraktsii”, Dopolnenie k [1], 289–416

[3] Golubeva Z. N., “Nekotorye skalyarnye zadachi difraktsii i sootvetstvuyuschie nesamosopryazhennye operatory”, Radiotekhn. i elektronika, 21:2 (1976), 219–227 | MR

[4] Agranovich M. S., “Ellipticheskie operatory na zamknutykh mnogoobraziyakh”, Uravneniya v chastnykh proizvodnykh–VI, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 63, VINITI, M., 1990, 5–129 | MR

[5] Agranovich M. S., “Elliptic boundary problems”, Partial Differential Equations, IX, Encyclopaedia Math. Sci., 79, Springer-Verlag, Berlin, 1997, 1–144 | MR | Zbl

[6] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[7] Verchota G., Layer potentials and boundary value problems for Laplace's equation on Lipschitz domains, Dissertatsiya, Univ. of Minnesota, 1982

[8] Verchota G., “Layer potentials and regularity for the Dirichlet problem in Lipschitz domains”, J. Funct. Anal., 59 (1984), 572–611 | DOI | MR | Zbl

[9] Agranovich M. S., Amosov B. A., “Otsenki $s$-chisel i spektralnye asimptotiki dlya integralnykh operatorov tipa potentsiala na negladkoi poverkhnosti”, Funkts. analiz i ego prilozh., 30:2 (1996), 1–18 | MR | Zbl

[10] Torres R. H., Welland G. V., “The Helmholtz equation and transmission problems with Lipschitz interfaces”, Indiana Univ. Math. J., 42:4 (1993), 1457–1485 | DOI | MR | Zbl

[11] Mitrea M., “Boundary value problems and Hardy spaces associated to the Helmholtz equation in Lipschitz domains”, J. Math. Anal. Appl., 202 (1996), 819–842 | DOI | MR | Zbl

[12] Brown R., “The method of layer potentials for the heat equation in Lipschitz cylinders”, Amer. J. Math., 111 (1989), 339–379 | DOI | MR | Zbl

[13] Brown R., Shen Z., “The initial-Dirichlet problem for a fourth-order parabolic equation in Lipschitz cylinders”, Indiana Univ. Math. J., 39 (1990), 1313–1353 | DOI | MR | Zbl

[14] Calderón A. P., “Cauchy integrals on Lipschitz curves and related operators”, Proc. Nat. Acad. Sci. U.S.A., 74 (1977), 1324–1327 | DOI | MR | Zbl

[15] Coifman R., McIntosh A., Meyer Y., “L'intégrale de Cauchy définit un opérateur borné sur $L^2$ pour les courbes lipschitziennes”, Ann. of Math., 116 (1982), 361–387 | DOI | MR | Zbl

[16] Costabel M., “Boundary integral operators on Lipschitz domains: elementary results”, SIAM J. Math. Anal., 19 (1988), 613–626 | DOI | MR | Zbl

[17] Dahlberg B., “Estimates of harmonic measure”, Arch. Rational Mech. Anal., 65 (1977), 272–288 | DOI | MR

[18] Dahlberg B., “On the Poisson integral for Lipschitz and $C^1$ domains”, Studia Math., 66 (1979), 13–24 | MR | Zbl

[19] Dahlberg B., “Weighted norm inequalities for the Lusin area integral and the nontangential maximal functions for functions harmonic in a Lipschitz domain”, Studia Math., 67 (1980), 297–314 | MR | Zbl

[20] Dahlberg B., Verchota G., “Galerkin methods for the boundary integral equations of elliptic equations in nonsmooth domains”, Contemp. Math., 107 (1990), 39–60 | MR | Zbl

[21] Ding Z., “A proof of the trace theorem of Sobolev spaces on Lipschitz domains”, Proc. Amer. Math. Soc., 124:2 (1996), 591–600 | DOI | MR | Zbl

[22] Fabes E., Jodeit M., Jr., Lewis J., “Double layer potentials for domains with corners and edges”, Indiana Univ. Math. J., 26 (1977), 95–114 | DOI | MR | Zbl

[23] Fabes E., Jodeit M., Jr., Rivière N., “Potential techniques for boundary value problems on $C^1$ domains”, Acta Math., 141 (1978), 165–186 | DOI | MR | Zbl

[24] Jerison D., Kenig C., “An identity with applications to harmonic measure”, Bull. Amer. Math. Soc., 2 (1980), 447–451 | DOI | MR | Zbl

[25] Jerison D., Kenig C., “The Neumann problem on Lipschitz domains”, Bull. Amer. Math. Soc., 4 (1981), 203–207 | DOI | MR | Zbl

[26] Jerison D., Kenig C., “The Dirichlet problem in non-smooth domains”, Ann. of Math. (2), 113 (1981), 397–382 | DOI | MR

[27] Jerison D., Kenig C., “Boundary value problems on Lipschitz domains”, MAA Stud. Math., 23 (1982), 1–68 | MR | Zbl

[28] Jerison D., Kenig C., “The inhomogeneous Dirichlet problem in Lipschitz domains”, J. Funct. Anal., 113 (1995), 161–219 | DOI | MR

[29] Kenig C., “Recent progress on boundary value problems on Lipschitz domains”, Proc. Sympos. Pure Math., 43 (1985), 175–205 | MR | Zbl

[30] Kenig C., “Elliptic boundary value problems on Lipschitz domains”, Beijing lectures in harmonic analysis, Ann. of Math. Stud., 112, Princeton Univ. Press, Princeton, 1986, 131–183 | MR

[31] Agranovich M. S., Amosov B. A., Levitin M., Spectral problems for the Lamé system in smooth and nonsmooth domains with spectral parameter in boundary conditions, Preprint, 1998

[32] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987 | MR

[33] Vekua I. N., “O metagarmonicheskikh funktsiyakh”, Trudy Tbilisskogo matem. in-ta, 1943, no. 12, 105–174 | MR | Zbl

[34] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[35] Grisvard P., Boundary value problems in nonsmooth domains, Pitman, London, 1985 | Zbl

[36] Mitrea A., Torres R. H., Welland G. V., “Regularity and approximation results for the Maxwell problem on $C^1$ and Lipschitz domains”, Clifford Algebras in Analysis and Related Topics, ed. J. Ryan, CRS Press, Boca Raton, 1996, 297–308 | MR

[37] Nechas I., “Ob oblastyakh tipa $\mathscr N$”, Chekhosl. matem. zhurn., 12 (87) (1962), 274–287 | MR | Zbl

[38] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[39] Birman M. S., Solomyak M. Z., “O glavnom chlene v spektralnoi asimptotike dlya negladkikh ellipticheskikh zadach”, Funkts. analiz i ego prilozh., 4:4 (1970), 1–11 | MR

[40] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[41] Lidskii V. B., “O summiruemosti ryadov po glavnym vektoram nesamosopryazhennykh operatorov”, Tr. MMO, 11, URSS, M., 1962, 3–35 | MR

[42] Nazarov S. A., Plamenevskii B. A., Ellipicheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[43] Spravochnik po spetsialnym funktsiyam, eds. Abramovits M., Stigan I. M., Nauka, M., 1979 | MR

[44] Khërmander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965 | MR