@article{SM_1999_190_1_a0,
author = {O. N. Ageev},
title = {The spectral multiplicity function and geometric representations of interval exchange transformations},
journal = {Sbornik. Mathematics},
pages = {1--28},
year = {1999},
volume = {190},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_1_a0/}
}
O. N. Ageev. The spectral multiplicity function and geometric representations of interval exchange transformations. Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 1-28. http://geodesic.mathdoc.fr/item/SM_1999_190_1_a0/
[1] Katok A. B., Sinai Ya. G., Stepin A. M., “Teoriya dinamicheskikh sistem i obschikh grupp preobrazovanii s invariantnoi meroi”, Itogi nauki i tekhniki. Matem. analiz, 13, VINITI, M., 1975, 129–262 | MR
[2] Vershik A. M., Yuzvinskii S. A., “Dinamicheskie sistemy s invariantnoi meroi”, Itogi nauki i tekhniki. Matem. analiz, VINITI, M., 1969, 133–187
[3] von Neumann J., “Zur Operatorenmethode in der Klassischen Mechanik”, Ann. of Math. (2), 33 (1932), 587–642 | DOI | MR | Zbl
[4] Rokhlin V. A., “Lektsii po entropiinoi teorii preobrazovanii s invariantnoi meroi”, UMN, 22:5 (1967), 3–56 | MR | Zbl
[5] Vershik A. M., Kornfeld I. P., Sinai Ya. G., “Obschaya ergodicheskaya teoriya grupp preobrazovanii s invariantnoi meroi”, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 2, VINITI, M., 1985, 5–111 | MR
[6] Ageev O. N., “Dinamicheskie sistemy s chetnokratnoi lebegovskoi komponentoi v spektre”, Matem. sb., 136 (178) (1988), 307–319
[7] Lemanczyk M., “Toeplitz $\mathbb Z_2$-extensions”, Ann. Inst. H. Poincaré Probab. Statist., 24:1 (1988), 1–43 | MR | Zbl
[8] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl
[9] Oseledets V. N., “O spektre ergodicheskikh avtomorfizmov”, Dokl. AN SSSR, 168:5 (1966), 1009–1011 | MR | Zbl
[10] Robinson E. A., “Ergodic measure preserving transformations with arbitrary finite spectral multiplicities”, Invent. Math., 72:2 (1983), 299–314 | DOI | MR | Zbl
[11] Goodson G. R., “On the spectral multiplicity of a class of finite rank transformations”, Proc. Amer. Math. Soc., 93:2 (1985), 303–306 | DOI | MR | Zbl
[12] Robinson E. A., “Transformations with highly nonhomogeneous spectrum of finite multiplicity”, Israel J. Math., 56:1 (1986), 75–78 | DOI | MR
[13] Goodson G. R., Kwiatkowski J., Lemanczyk M., Liardet P., “On the multiplicity function of ergodic groupextensions of rotations”, Studia Math., 102:2 (1992), 157–174 | MR | Zbl
[14] Blanchard F., Lemanczyk M., “Measure-preserving diffeomorphisms with an arbitrary spectral multiplicity”, Topol. Methods Nonlinear Anal., 1:2 (1993), 275–294 | MR | Zbl
[15] Ageev O. N., “Peremeshivanie v komponentakh i perekladyvaniya $T_{\alpha,\beta}$”, UMN, 49:2 (1994), 143–144 | MR | Zbl
[16] Ageev O. N., “Spektralnyi tip perekladyvanii $T_{\alpha,\beta}$”, Matem. sb., 188:8 (1997), 13–44 | MR | Zbl
[17] Veech W. A., “The metrical theory of interval exchanges transformations. I. General spectral properties”, Amer. J. Math., 106 (1984), 1331–1359 | DOI | MR | Zbl
[18] Katok A. B., Constructions in ergodic theory, Preprint, 1986 | MR
[19] Katok A. B., Stepin A. M., “Approksimatsii v ergodicheskoi teorii”, UMN, 22:5 (1967), 81–106 | MR | Zbl
[20] Keane M., “Nonergodic interval exchange transformations”, Israel J. Math., 26:2 (1977), 188–196 | DOI | MR | Zbl
[21] Fürstenberg H., “Strict ergodicity and transformation of the torus”, Amer. J. Math., 83:4 (1961), 573–601 | DOI | MR