The spectral multiplicity function and geometric representations of interval exchange transformations
Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 1-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article solves the problem of which sets can be the set $\mathscr M$ of values of the spectral multiplicity function of an ergodic (strictly ergodic) interval exchange transformation and also of a simply ergodic dynamical system. By means of the method of geometric representations subsets of transformations are constructed that are generic in the metric and topological sense in the respective subclasses, and whose spectral multiplicity function has a prescribed set of values (in $\mathbb N\cup\{\infty\}$ naturally). These classes of transformations exhibit a new spectral effect: the component of multiplicity 1 in the spectrum is not the same as the spectrum of any factor of these transformations. Specific examples of strictly ergodic interval exchange transformations are constructed whose spectral multiplicity functions have all possible sets of values.
@article{SM_1999_190_1_a0,
     author = {O. N. Ageev},
     title = {The spectral multiplicity function and geometric representations of interval exchange transformations},
     journal = {Sbornik. Mathematics},
     pages = {1--28},
     year = {1999},
     volume = {190},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_1_a0/}
}
TY  - JOUR
AU  - O. N. Ageev
TI  - The spectral multiplicity function and geometric representations of interval exchange transformations
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1
EP  - 28
VL  - 190
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_1_a0/
LA  - en
ID  - SM_1999_190_1_a0
ER  - 
%0 Journal Article
%A O. N. Ageev
%T The spectral multiplicity function and geometric representations of interval exchange transformations
%J Sbornik. Mathematics
%D 1999
%P 1-28
%V 190
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1999_190_1_a0/
%G en
%F SM_1999_190_1_a0
O. N. Ageev. The spectral multiplicity function and geometric representations of interval exchange transformations. Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 1-28. http://geodesic.mathdoc.fr/item/SM_1999_190_1_a0/

[1] Katok A. B., Sinai Ya. G., Stepin A. M., “Teoriya dinamicheskikh sistem i obschikh grupp preobrazovanii s invariantnoi meroi”, Itogi nauki i tekhniki. Matem. analiz, 13, VINITI, M., 1975, 129–262 | MR

[2] Vershik A. M., Yuzvinskii S. A., “Dinamicheskie sistemy s invariantnoi meroi”, Itogi nauki i tekhniki. Matem. analiz, VINITI, M., 1969, 133–187

[3] von Neumann J., “Zur Operatorenmethode in der Klassischen Mechanik”, Ann. of Math. (2), 33 (1932), 587–642 | DOI | MR | Zbl

[4] Rokhlin V. A., “Lektsii po entropiinoi teorii preobrazovanii s invariantnoi meroi”, UMN, 22:5 (1967), 3–56 | MR | Zbl

[5] Vershik A. M., Kornfeld I. P., Sinai Ya. G., “Obschaya ergodicheskaya teoriya grupp preobrazovanii s invariantnoi meroi”, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 2, VINITI, M., 1985, 5–111 | MR

[6] Ageev O. N., “Dinamicheskie sistemy s chetnokratnoi lebegovskoi komponentoi v spektre”, Matem. sb., 136 (178) (1988), 307–319

[7] Lemanczyk M., “Toeplitz $\mathbb Z_2$-extensions”, Ann. Inst. H. Poincaré Probab. Statist., 24:1 (1988), 1–43 | MR | Zbl

[8] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[9] Oseledets V. N., “O spektre ergodicheskikh avtomorfizmov”, Dokl. AN SSSR, 168:5 (1966), 1009–1011 | MR | Zbl

[10] Robinson E. A., “Ergodic measure preserving transformations with arbitrary finite spectral multiplicities”, Invent. Math., 72:2 (1983), 299–314 | DOI | MR | Zbl

[11] Goodson G. R., “On the spectral multiplicity of a class of finite rank transformations”, Proc. Amer. Math. Soc., 93:2 (1985), 303–306 | DOI | MR | Zbl

[12] Robinson E. A., “Transformations with highly nonhomogeneous spectrum of finite multiplicity”, Israel J. Math., 56:1 (1986), 75–78 | DOI | MR

[13] Goodson G. R., Kwiatkowski J., Lemanczyk M., Liardet P., “On the multiplicity function of ergodic groupextensions of rotations”, Studia Math., 102:2 (1992), 157–174 | MR | Zbl

[14] Blanchard F., Lemanczyk M., “Measure-preserving diffeomorphisms with an arbitrary spectral multiplicity”, Topol. Methods Nonlinear Anal., 1:2 (1993), 275–294 | MR | Zbl

[15] Ageev O. N., “Peremeshivanie v komponentakh i perekladyvaniya $T_{\alpha,\beta}$”, UMN, 49:2 (1994), 143–144 | MR | Zbl

[16] Ageev O. N., “Spektralnyi tip perekladyvanii $T_{\alpha,\beta}$”, Matem. sb., 188:8 (1997), 13–44 | MR | Zbl

[17] Veech W. A., “The metrical theory of interval exchanges transformations. I. General spectral properties”, Amer. J. Math., 106 (1984), 1331–1359 | DOI | MR | Zbl

[18] Katok A. B., Constructions in ergodic theory, Preprint, 1986 | MR

[19] Katok A. B., Stepin A. M., “Approksimatsii v ergodicheskoi teorii”, UMN, 22:5 (1967), 81–106 | MR | Zbl

[20] Keane M., “Nonergodic interval exchange transformations”, Israel J. Math., 26:2 (1977), 188–196 | DOI | MR | Zbl

[21] Fürstenberg H., “Strict ergodicity and transformation of the torus”, Amer. J. Math., 83:4 (1961), 573–601 | DOI | MR