Dead cores and instantaneous compactification of the supports of energy solutions of quasilinear parabolic equations of arbitrary order
Sbornik. Mathematics, Tome 190 (1999) no. 12, pp. 1843-1869 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general sufficient condition for the formation of “dead cores” of generalized solutions of a wide class of quasilinear parabolic equations of non-linear diffusion-absorption type is obtained. On that basis a sufficient and close to necessary condition for the instantaneous compactification of the support of an arbitrary local energy solution of the corresponding Cauchy problem is derived, which is expressed in terms of the behaviour at infinity of some integral norm (with respect to balls of fixed radius) of the initial function. A precise upper bound for the compactification radius is obtained.
@article{SM_1999_190_12_a3,
     author = {A. E. Shishkov},
     title = {Dead cores and instantaneous compactification of the~supports of energy solutions of quasilinear parabolic equations of arbitrary order},
     journal = {Sbornik. Mathematics},
     pages = {1843--1869},
     year = {1999},
     volume = {190},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_12_a3/}
}
TY  - JOUR
AU  - A. E. Shishkov
TI  - Dead cores and instantaneous compactification of the supports of energy solutions of quasilinear parabolic equations of arbitrary order
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1843
EP  - 1869
VL  - 190
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_12_a3/
LA  - en
ID  - SM_1999_190_12_a3
ER  - 
%0 Journal Article
%A A. E. Shishkov
%T Dead cores and instantaneous compactification of the supports of energy solutions of quasilinear parabolic equations of arbitrary order
%J Sbornik. Mathematics
%D 1999
%P 1843-1869
%V 190
%N 12
%U http://geodesic.mathdoc.fr/item/SM_1999_190_12_a3/
%G en
%F SM_1999_190_12_a3
A. E. Shishkov. Dead cores and instantaneous compactification of the supports of energy solutions of quasilinear parabolic equations of arbitrary order. Sbornik. Mathematics, Tome 190 (1999) no. 12, pp. 1843-1869. http://geodesic.mathdoc.fr/item/SM_1999_190_12_a3/

[1] Kalashnikov A. S., “Nekotorye zadachi kachestvennoi teorii nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii vtorogo poryadka”, UMN, 42:2 (1987), 135–176 | MR | Zbl

[2] Antontsev S. N., Diaz J. I., Shmarev S. I., “The support shrinking properties for solutions of quasilinear parabolic equations with strong absorption terms”, Ann. Fac. Sci. Toulouse Math. (6), 4:1 (1995), 5–30 | MR | Zbl

[3] Bernis F., “Finite speed of propagations and asymptotic rates for some nonlinear higher order parabolic equations with absorption”, Proc. Roy. Soc. Edinburgh. Sect. A, 104 (1986), 1–19 | MR | Zbl

[4] Evans L. C., Knerr B. F., “Instantaneous shrinking of the support of nonnegative solutions to certain nonlinear parabolic equations and variational inequalities”, Illinois J. Math., 23:1 (1979), 153–166 | MR | Zbl

[5] Brezis H., Friedman A., “Estimates of the support of solutions of parabolic variational inequalities”, Illinois J. Math., 20:1 (1976), 82–97 | MR | Zbl

[6] Kalashnikov A. S., “Ob usloviyakh mgnovennoi kompaktifikatsii nositelei reshenii polulineinykh parabolicheskikh uravnenii i sistem”, Matem. zametki, 47:1 (1990), 74–80 | MR | Zbl

[7] Kersner R., Nicolosi F., “The nonlinear heat equations with absorption: Effect of variable coefficients”, J. Math. Anal. Appl., 170:2 (1992), 551–566 | DOI | MR | Zbl

[8] Kalashnikov A. S., “O povedenii vblizi nachalnoi giperploskosti reshenii zadachi Koshi dlya parabolicheskikh sistem s nelineinoi dissipatsiei”, Trudy sem. im. I. G. Petrovskogo, 16, Izd-vo MGU, M., 1992, 106–117

[9] Borelli M., Ughi M., “The fast diffusion equation with strong absorption: The instantaneous shrinking phenomenon”, Rend. Instit. Mat. Univ. Trieste, 26:1–2 (1994), 109–140 | MR | Zbl

[10] Abdullaev U. G., “O tochnykh lokalnykh otsenkakh nositelya reshenii v zadachakh dlya nelineinykh parabolicheskikh uravnenii”, Matem. sb., 186:8 (1995), 3–24 | MR | Zbl

[11] Kalashnikov A. S., “O kvazilineinykh vyrozhdayuschikhsya parabolicheskikh uravneniyakh s singulyarnymi mladshimi chlenami i rastuschimi nachalnymi dannymi”, Differents. uravneniya, 29:6 (1993), 999–1009 | MR | Zbl

[12] Kersner R., Shishkov A., “Instantaneous shrinking of the support of energy solutions”, J. Math. Anal. Appl., 198:3 (1996), 729–750 | DOI | MR | Zbl

[13] Antontsev S. N., “O lokalizatsii reshenii nelineinykh vyrozhdayuschikhsya ellipticheskikh i parabolicheskikh uravnenii”, Dokl. AN SSSR, 260:6 (1981), 1289–1293 | MR | Zbl

[14] Bandle C., Stakgold I., “The formation of dead core in parabolic reaction-diffusion problems”, Trans. Amer. Math. Soc., 286 (1984), 275–293 | DOI | MR | Zbl

[15] Diaz J. I., Hernandez J., “Qualitative properties of free boundaries for some nonlinear degenerate parabolic equations”, Nonlinear parabolic equations: qualitative properties of solutions, Proc. Conf. (Rome/Italy, 1985), Pitman Res. Notes Math. Ser., 149, 1987, 85–93 | MR | Zbl

[16] Shishkov A. E., Dead core and instantaneous shrinking of support of energy solutins of the quasilinear parabolic equations of arbitrary order, Preprint of IAMM of NAS of Ukraine. No97.03. June 1997

[17] Benilan Ph., Crandall M. G., Pierre M., “Solutions of the porous medium equation in $\mathbb R^N$ under optimal conditions on initial values”, Indiana Univ. Math. J., 33 (1984), 51–87 | DOI | MR | Zbl

[18] Bernis F., “Existence results for doubly nonlinear higher order parabolic equations on unbounded domains”, Math. Ann., 279:3 (1988), 373–394 | DOI | MR | Zbl

[19] Di Benedetto E., Herrero M. A., “On the Cauchy problem and initial traces for a degenerate parabolic equation”, Trans. Amer. Math. Soc., 314:1 (1989), 187–224 | DOI | MR

[20] Shishkov A. E., “Evolyutsiya nositelya resheniya s neogranichennoi energiei kvazilineinogo vyrozhdayuschegosya parabolicheskogo uravneniya proizvolnogo poryadka”, Matem. sb., 186:12 (1995), 151–172 | MR | Zbl