The Dyer--Lashof algebra and the~Steenrod algebra for generalized homology and cohomology
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 190 (1999) no. 12, pp. 1807-1842
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An analogue $\mathbb R$ of the Dyer–Lashof algebra $R$ and an analogue $\mathbb A$ of the Steenrod algebra $A$ are defined for generalized homology and cohomology theories. It is shown that if there is an $E_\infty$-multiplicative structure on a spectrum $\mathbb H$, then on the corresponding generalized cohomology $\mathbb H^*(X)$ of a topological space $X$ there is an action $\mathbb A\otimes \mathbb H^*(X)\to \mathbb H^*(X)$ of the Steenrod algebra, while if the space $X$ is an $E_\infty$-space, then on the generalized homology $\mathbb H^*(X)$ there is an action $\mathbb R\otimes \mathbb H_*(X)\to \mathbb H_*(X)$  of the Dyer–Lashof algebra. These actions are computed for cobordism of topological spaces. A connection is established between the Steenrod operations and the Landweber–Novikov operations.
			
            
            
            
          
        
      @article{SM_1999_190_12_a2,
     author = {V. A. Smirnov},
     title = {The {Dyer--Lashof} algebra and {the~Steenrod} algebra for generalized homology and cohomology},
     journal = {Sbornik. Mathematics},
     pages = {1807--1842},
     publisher = {mathdoc},
     volume = {190},
     number = {12},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_12_a2/}
}
                      
                      
                    TY - JOUR AU - V. A. Smirnov TI - The Dyer--Lashof algebra and the~Steenrod algebra for generalized homology and cohomology JO - Sbornik. Mathematics PY - 1999 SP - 1807 EP - 1842 VL - 190 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1999_190_12_a2/ LA - en ID - SM_1999_190_12_a2 ER -
V. A. Smirnov. The Dyer--Lashof algebra and the~Steenrod algebra for generalized homology and cohomology. Sbornik. Mathematics, Tome 190 (1999) no. 12, pp. 1807-1842. http://geodesic.mathdoc.fr/item/SM_1999_190_12_a2/
