The Dyer--Lashof algebra and the~Steenrod algebra for generalized homology and cohomology
Sbornik. Mathematics, Tome 190 (1999) no. 12, pp. 1807-1842

Voir la notice de l'article provenant de la source Math-Net.Ru

An analogue $\mathbb R$ of the Dyer–Lashof algebra $R$ and an analogue $\mathbb A$ of the Steenrod algebra $A$ are defined for generalized homology and cohomology theories. It is shown that if there is an $E_\infty$-multiplicative structure on a spectrum $\mathbb H$, then on the corresponding generalized cohomology $\mathbb H^*(X)$ of a topological space $X$ there is an action $\mathbb A\otimes \mathbb H^*(X)\to \mathbb H^*(X)$ of the Steenrod algebra, while if the space $X$ is an $E_\infty$-space, then on the generalized homology $\mathbb H^*(X)$ there is an action $\mathbb R\otimes \mathbb H_*(X)\to \mathbb H_*(X)$ of the Dyer–Lashof algebra. These actions are computed for cobordism of topological spaces. A connection is established between the Steenrod operations and the Landweber–Novikov operations.
@article{SM_1999_190_12_a2,
     author = {V. A. Smirnov},
     title = {The {Dyer--Lashof} algebra and {the~Steenrod} algebra for generalized homology and cohomology},
     journal = {Sbornik. Mathematics},
     pages = {1807--1842},
     publisher = {mathdoc},
     volume = {190},
     number = {12},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_12_a2/}
}
TY  - JOUR
AU  - V. A. Smirnov
TI  - The Dyer--Lashof algebra and the~Steenrod algebra for generalized homology and cohomology
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1807
EP  - 1842
VL  - 190
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_12_a2/
LA  - en
ID  - SM_1999_190_12_a2
ER  - 
%0 Journal Article
%A V. A. Smirnov
%T The Dyer--Lashof algebra and the~Steenrod algebra for generalized homology and cohomology
%J Sbornik. Mathematics
%D 1999
%P 1807-1842
%V 190
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1999_190_12_a2/
%G en
%F SM_1999_190_12_a2
V. A. Smirnov. The Dyer--Lashof algebra and the~Steenrod algebra for generalized homology and cohomology. Sbornik. Mathematics, Tome 190 (1999) no. 12, pp. 1807-1842. http://geodesic.mathdoc.fr/item/SM_1999_190_12_a2/