Homogenization of elasticity equations with contrasting coefficients
Sbornik. Mathematics, Tome 190 (1999) no. 12, pp. 1749-1806 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Non-stationary problems of linearized elasticity theory in a periodic medium with pores filled with an easily deformable material are considered. The period of the medium is a small positive parameter. It is assumed that the density and the ratio of the minimum and the maximum values of the elasticity moduli of the material are also small positive parameters. Homogenized equations solutions of which approximate the solutions of the problems under consideration are derived. Estimates of the accuracy of this approximation as the parameters approach zero are proved. The form of the homogenized equations and the estimates of the accuracy depend strongly on the geometric properties of the pores and on the asymptotic behaviour of certain expressions containing these small parameters.
@article{SM_1999_190_12_a1,
     author = {G. V. Sandrakov},
     title = {Homogenization of elasticity equations with contrasting coefficients},
     journal = {Sbornik. Mathematics},
     pages = {1749--1806},
     year = {1999},
     volume = {190},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_12_a1/}
}
TY  - JOUR
AU  - G. V. Sandrakov
TI  - Homogenization of elasticity equations with contrasting coefficients
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1749
EP  - 1806
VL  - 190
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_12_a1/
LA  - en
ID  - SM_1999_190_12_a1
ER  - 
%0 Journal Article
%A G. V. Sandrakov
%T Homogenization of elasticity equations with contrasting coefficients
%J Sbornik. Mathematics
%D 1999
%P 1749-1806
%V 190
%N 12
%U http://geodesic.mathdoc.fr/item/SM_1999_190_12_a1/
%G en
%F SM_1999_190_12_a1
G. V. Sandrakov. Homogenization of elasticity equations with contrasting coefficients. Sbornik. Mathematics, Tome 190 (1999) no. 12, pp. 1749-1806. http://geodesic.mathdoc.fr/item/SM_1999_190_12_a1/

[1] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Matem. sb., 187:8 (1996), 3–40 | MR | Zbl

[2] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[3] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[4] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[5] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993 | MR | Zbl

[6] Ladyzhenskaya O. A., Smeshannaya zadacha dlya giperbolicheskogo uravneniya, GITTL, M., 1953

[7] Sandrakov G. V., Osrednenie linearizovannoi sistemy gidrodinamiki s maloi vyazkostyu i skorost zvuka v smesyakh, Preprint OVM AN SSSR. No 178, OVM AN SSSR, M., 1987 | MR

[8] Sandrakov G. V., “Printsipy osredneniya uravnenii s bystroostsilliruyuschimi koeffitsientami”, Matem. sb., 180:12 (1989), 1634–1679 | MR

[9] Panasenko G. P., “Mnogokomponentnoe osrednenie protsessov v silno neodnorodnykh strukturakh”, Matem. sb., 181:1 (1990), 134–142 | MR | Zbl

[10] Panasenko G. P., “Chislenno-asimptoticheskii metod mnogokomponentnogo osredneniya dlya uravnenii s kontrastnymi koeffitsientami”, ZhVM i MF, 30:2 (1990), 243–253 | MR | Zbl

[11] Bakhvalov N. S., Eglit M. E., “O predelnom povedenii periodicheskikh sred s myagkomodulnymi vklyucheniyami”, ZhVM i MF, 35:6 (1995), 905–917 | MR | Zbl

[12] Sandrakov G. V., “Osrednenie nestatsionarnykh uravnenii s kontrastnymi koeffitsientami”, Dokl. RAN, 355:5 (1997), 605–608 | MR | Zbl

[13] Sandrakov G. V., “Osrednenie nestatsionarnykh zadach teorii silno neodnorodnykh uprugikh sred”, Dokl. RAN, 358:3 (1998), 308–311 | MR

[14] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981 | MR | Zbl

[15] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR

[16] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3, (1964), 53–161 | MR | Zbl

[17] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962