$L_2$-stable semigroups, Muckenhoupt weights, and unconditional bases of values of quasi-exponentials
Sbornik. Mathematics, Tome 190 (1999) no. 12, pp. 1715-1747 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of unbounded operators with discrete spectrum in a separable Hilbert space is distinguished, in which the property of being the generator of an $L_2$-stable semigroup is equivalent to the similarity to the Sz.-Nadya–Foiash scalar model. In the proof of this result a connection with the theory of Muckenhoupt weights is established. A criterion for the similarity of a dissipative unicellular operator to the simplest integration operator is also derived. The notion of a quasiexponential, an abstract analogue of an exponential, is introduced. As an application, a description of all unconditional bases in the Hilbert space consisting of values of a quasiexponential is presented.
@article{SM_1999_190_12_a0,
     author = {G. M. Gubreev},
     title = {$L_2$-stable semigroups, {Muckenhoupt} weights, and unconditional bases of values of quasi-exponentials},
     journal = {Sbornik. Mathematics},
     pages = {1715--1747},
     year = {1999},
     volume = {190},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_12_a0/}
}
TY  - JOUR
AU  - G. M. Gubreev
TI  - $L_2$-stable semigroups, Muckenhoupt weights, and unconditional bases of values of quasi-exponentials
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1715
EP  - 1747
VL  - 190
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_12_a0/
LA  - en
ID  - SM_1999_190_12_a0
ER  - 
%0 Journal Article
%A G. M. Gubreev
%T $L_2$-stable semigroups, Muckenhoupt weights, and unconditional bases of values of quasi-exponentials
%J Sbornik. Mathematics
%D 1999
%P 1715-1747
%V 190
%N 12
%U http://geodesic.mathdoc.fr/item/SM_1999_190_12_a0/
%G en
%F SM_1999_190_12_a0
G. M. Gubreev. $L_2$-stable semigroups, Muckenhoupt weights, and unconditional bases of values of quasi-exponentials. Sbornik. Mathematics, Tome 190 (1999) no. 12, pp. 1715-1747. http://geodesic.mathdoc.fr/item/SM_1999_190_12_a0/

[1] Brodskii M. S., Treugolnye i zhordanovy predstavleniya lineinykh operatorov, Nauka, M., 1969 | MR

[2] Krein S. G., Khazan M. I., “Differentsialnye uravneniya v banakhovom prostranstve”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Matem. analiz, 21, VINITI, M., 1983, 130–264 | MR

[3] Gubreev G. M., “Spektralnyi analiz biortogonalnykh razlozhenii funktsii v ryady eksponent”, Izv. AN SSSR. Ser. matem., 53:6 (1989), 1236–1268

[4] Gubreev G. M., “Spektralnyi analiz biortogonalnykh razlozhenii, porozhdaemykh vesami Makenkhaupta”, Zapiski nauch. sem. LOMI, 190, Nauka, L., 1991, 34–80

[5] Gubreev G. M., Spektralnyi analiz biortogonalnykh razlozhenii, porozhdaemykh vesami Makenkhaupta, Diss. $\dots$ dokt. fiz.-mat. nauk, FTINT, Kharkov, 1995

[6] Gubreev G. M., “Ob odnom klasse bezuslovnykh bazisov gilbertovykh prostranstv i o probleme podobiya dissipativnykh volterrovykh operatorov”, Matem. sb., 183:9 (1992), 105–146 | MR | Zbl

[7] Linear and complex analysis, eds. Havin V. P., Nikolski N. K., Springer-Verlag, Berlin, 1994

[8] Gubreev G. M., “Bezuslovnye bazisy gilbertovykh prostranstv iz znachenii kvazieksponent”, Sb. trudov, posvyasch. 75-letiyu Odesskogo gos. ped. in-ta, Odessa, 1994, 4–9

[9] Gubreev G. M., “Bezuslovnye bazisy gilbertovykh prostranstv, sostavlennye iz znachenii tselykh vektor-funktsii eksponentsialnogo tipa”, Funkts. analiz i ego prilozh., 33:1 (1999), 62–65 | MR | Zbl

[10] Datko R., “Uniform asymptotic stability of evolutionary processes in Banach space”, SIAM J. Math. Anal., 3 (1972), 428–445 | DOI | MR | Zbl

[11] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[12] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[13] Hunt R., Muckenhoupt B., Wheeden R., “Weighted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176 (1973), 227–251 | DOI | MR | Zbl

[14] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[15] Sekefalvi-Nad B., Foiash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[16] Minkin A. M., “Neobkhodimost usloviya Makenkhaupta dlya bezuslovnoi bazisnosti sobstvennykh funktsii”, Algebra i analiz, 10:3 (1998), 65–91 | MR | Zbl

[17] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR