$L_2$-stable semigroups, Muckenhoupt weights, and unconditional bases of values of quasi-exponentials
Sbornik. Mathematics, Tome 190 (1999) no. 12, pp. 1715-1747
Voir la notice de l'article provenant de la source Math-Net.Ru
A class of unbounded operators with discrete spectrum in a separable Hilbert space is distinguished, in which the property of being the generator of an $L_2$-stable semigroup is equivalent to the similarity to the Sz.-Nadya–Foiash scalar model. In the proof of this result a connection with the theory of Muckenhoupt weights is established. A criterion for the similarity of a dissipative unicellular operator to the simplest integration operator is also derived. The notion of a quasiexponential, an abstract analogue of an exponential, is introduced. As an application, a description of all unconditional bases in the Hilbert space consisting of values of a quasiexponential is presented.
@article{SM_1999_190_12_a0,
author = {G. M. Gubreev},
title = {$L_2$-stable semigroups, {Muckenhoupt} weights, and unconditional bases of values of quasi-exponentials},
journal = {Sbornik. Mathematics},
pages = {1715--1747},
publisher = {mathdoc},
volume = {190},
number = {12},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_12_a0/}
}
TY - JOUR AU - G. M. Gubreev TI - $L_2$-stable semigroups, Muckenhoupt weights, and unconditional bases of values of quasi-exponentials JO - Sbornik. Mathematics PY - 1999 SP - 1715 EP - 1747 VL - 190 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1999_190_12_a0/ LA - en ID - SM_1999_190_12_a0 ER -
G. M. Gubreev. $L_2$-stable semigroups, Muckenhoupt weights, and unconditional bases of values of quasi-exponentials. Sbornik. Mathematics, Tome 190 (1999) no. 12, pp. 1715-1747. http://geodesic.mathdoc.fr/item/SM_1999_190_12_a0/