Relaxation in non-convex optimal control problems described by first-order evolution equations
Sbornik. Mathematics, Tome 190 (1999) no. 11, pp. 1689-1714 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem is considered of minimizing an integral functional with integrand that is not convex in the control, on solutions of a control system described by a first-order non-linear evolution equation with mixed non-convex constraints on the control. A relaxation problem is treated along with the original problem. Under appropriate assumptions it is proved that the relaxation problem has an optimal solution and that for each optimal solution there is a minimizing sequence for the original problem that converges to the optimal solution. Moreover, in the appropriate topologies the convergence is uniform simultaneously for the trajectory, the control, and the functional. The converse also holds. An example of a non-linear parabolic control system is treated in detail.
@article{SM_1999_190_11_a4,
     author = {A. A. Tolstonogov},
     title = {Relaxation in non-convex optimal control problems described by first-order evolution equations},
     journal = {Sbornik. Mathematics},
     pages = {1689--1714},
     year = {1999},
     volume = {190},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_11_a4/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - Relaxation in non-convex optimal control problems described by first-order evolution equations
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1689
EP  - 1714
VL  - 190
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_11_a4/
LA  - en
ID  - SM_1999_190_11_a4
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T Relaxation in non-convex optimal control problems described by first-order evolution equations
%J Sbornik. Mathematics
%D 1999
%P 1689-1714
%V 190
%N 11
%U http://geodesic.mathdoc.fr/item/SM_1999_190_11_a4/
%G en
%F SM_1999_190_11_a4
A. A. Tolstonogov. Relaxation in non-convex optimal control problems described by first-order evolution equations. Sbornik. Mathematics, Tome 190 (1999) no. 11, pp. 1689-1714. http://geodesic.mathdoc.fr/item/SM_1999_190_11_a4/

[1] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[2] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[3] Suslov S. I., “Teorema Bogolyubova s ogranicheniem v vide differentsialnogo vklyucheniya”, Sib. matem. zhurn., 35:4 (1994), 902–914 | MR | Zbl

[4] Papageorgiou N. S., “Existence and variational problems for nonlinear evolution inclusions”, Math. Japon, 38:3 (1993), 433–443 | MR | Zbl

[5] Zeidler E., Nonlinear functional analysis and its applications, V. II, Springer-Verlag, New York, 1990 | MR

[6] Burbaki N., Topologicheskie vektornye prostranstva, IL, M., 1959

[7] Lions J. L., Quelques méthodes de résolution des problèmes aux limites nonlineaires, Dunod, Paris, 1969 | Zbl

[8] Migorski S., “On an existence result for nonlinear evolution inclusions”, Proc. Edinburgh Math. Soc. (2), 39 (1996), 133–141 | DOI | MR | Zbl

[9] Papageorgiou N. S., “On the “bang-bang” principle for nonlinear evolution inclusions”, Dynam. Systems Appl., 2 (1993), 61–74 | MR | Zbl

[10] Tolstonogov A. A., “K teoreme Skortsa–Dragoni dlya mnogoznachnykh otobrazhenii s peremennoi oblastyu opredeleniya”, Matem. zametki, 48:5 (1990), 109–120 | MR | Zbl

[11] Himmelberg C. J., “Measurable relations”, Fund. Math., 87 (1975), 53–72 | MR | Zbl

[12] Tolstonogov A. A., Tolstonogov D. A., “$L_p$-continuous extreme selectors of multifunction with decomposable values: existence theorems”, Set-Valued Anal., 4 (1996), 173–203 | DOI | MR | Zbl

[13] Tolstonogov A. A., Tolstonogov D. A., “$L_p$-nepreryvnye ekstremalnye selektory mnogoznachnykh otobrazhenii s razlozhimymi znacheniyami”, Dokl. RAN, 35:4 (1997), 455–457 | MR

[14] Fryszkowski A., “Continuous selections for a class of non-convex multivalued maps”, Studia Math., 76 (1983), 163–174 | MR | Zbl

[15] Tolstonogov A. A., Tolstonogov D. A., “$L_p$-continuous extreme selectors of multifunctions with decomposable values: relaxation theorems”, Set-Valued Anal., 4 (1996), 237–269 | DOI | MR | Zbl

[16] Balder E. J., “Necessary and sufficient condition for $L_1$-strong-weak lower semicontinuity of integral functionals”, Nonlinear Anal., 11:12 (1987), 1399–1404 | DOI | MR | Zbl

[17] Tolstonogov A. A., “O resheniyakh evolyutsionnykh vklyuchenii, I”, Sib. matem. zhurn., 33:3 (1992), 161–174 | MR

[18] Hiai F., Umegaki H., “Integrals, conditional expectations and martingales of multivalued functions”, J. Multivariate Anal., 7 (1977), 149–182 | DOI | MR | Zbl

[19] Shvarts L., Analiz, T. 1, Mir, M., 1972 | MR

[20] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967