Spaces of fractional quotients, discrete operators, and their applications.~II
Sbornik. Mathematics, Tome 190 (1999) no. 11, pp. 1623-1687

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of discrete operators in spaces of fractional quotients is developed. A theorem on the stability of discrete operators under smooth perturbations is proved. On this basis, using special quadrature formulae of rectangular kind, the convergence of approximate solutions of hypersingular integral equations to their exact solutions is demonstrated and a mathematical substantiation of the method of closed discrete vortex frameworks is obtained. The same line of argument is also applied to difference equations arising in the solution of the homogeneous Dirichlet problem for a general second-order elliptic equation with variable coefficients.
@article{SM_1999_190_11_a3,
     author = {I. K. Lifanov and L. N. Poltavskii},
     title = {Spaces of fractional quotients, discrete operators, and their {applications.~II}},
     journal = {Sbornik. Mathematics},
     pages = {1623--1687},
     publisher = {mathdoc},
     volume = {190},
     number = {11},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_11_a3/}
}
TY  - JOUR
AU  - I. K. Lifanov
AU  - L. N. Poltavskii
TI  - Spaces of fractional quotients, discrete operators, and their applications.~II
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1623
EP  - 1687
VL  - 190
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_11_a3/
LA  - en
ID  - SM_1999_190_11_a3
ER  - 
%0 Journal Article
%A I. K. Lifanov
%A L. N. Poltavskii
%T Spaces of fractional quotients, discrete operators, and their applications.~II
%J Sbornik. Mathematics
%D 1999
%P 1623-1687
%V 190
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1999_190_11_a3/
%G en
%F SM_1999_190_11_a3
I. K. Lifanov; L. N. Poltavskii. Spaces of fractional quotients, discrete operators, and their applications.~II. Sbornik. Mathematics, Tome 190 (1999) no. 11, pp. 1623-1687. http://geodesic.mathdoc.fr/item/SM_1999_190_11_a3/