@article{SM_1999_190_11_a2,
author = {V. V. Volchkov},
title = {Injectivity sets of the {Pompeiu} transform},
journal = {Sbornik. Mathematics},
pages = {1607--1622},
year = {1999},
volume = {190},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_11_a2/}
}
V. V. Volchkov. Injectivity sets of the Pompeiu transform. Sbornik. Mathematics, Tome 190 (1999) no. 11, pp. 1607-1622. http://geodesic.mathdoc.fr/item/SM_1999_190_11_a2/
[1] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987 | MR
[2] Berenstein K. A., Struppa D., “Kompleksnyi analiz i uravneniya v svertkakh”, Itogi nauki i tekhn. Sovr. probl. matem. Fundam. napr., 54, VINITI, M., 1989, 5–111 | MR
[3] Zalcman L., “A bibliographic survey of the Pompeiu problem”, Approximation by solutions of partial differential equations, Proc. NATO Adv. Res. Workshop (Hanstholm/Den. 1991), NATO ASI Ser., Ser. C, 365, 1992, 185–194 | MR | Zbl
[4] Rawat R., Sitaram A., “The injectivity of the Pompeiu transform and $L^p$-analogues of the Wiener–Tauberian theorem”, Israel J. Math., 91 (1995), 307–316 | DOI | MR | Zbl
[5] Harchaoui M., “Inversion de la transformation de Pompeiu locale dans les espaces hyperboliques réel et complexe (cas de deux boules)”, J. Anal. Math., 67 (1995), 1–37 | DOI | MR | Zbl
[6] Quinto E. T., “Pompeiu transforms on geodesic spheres in real analytic manifolds”, Israel J. Math., 84 (1993), 353–363 | DOI | MR | Zbl
[7] Volchkov V. V., “Novye teoremy o srednem dlya reshenii uravneniya Gelmgoltsa”, Matem. sb., 184:7 (1993), 71–78 | MR | Zbl
[8] Volchkov V. V., “Ekstremalnye varianty problemy Pompeiyu”, Matem. zametki, 59:5 (1996), 671–680 | MR | Zbl
[9] Volchkov V. V., “Okonchatelnyi variant lokalnoi teoremy o dvukh radiusakh”, Matem. sb., 186:6 (1995), 15–34 | MR | Zbl
[10] Volchkov V. V., “Novye teoremy o dvukh radiusakh v teorii garmonicheskikh funktsii”, Izv. RAN. Ser. matem., 58:1 (1994), 182–194 | Zbl
[11] Volchkov V. V., “Reshenie problemy nositelya dlya nekotorykh klassov funktsii”, Matem. sb., 188:9 (1997), 13–30 | MR | Zbl
[12] Volchkov V. V., “Teoremy o srednem dlya odnogo klassa polinomov”, Sib. matem. zhurn., 35:4 (1994), 737–745 | MR | Zbl
[13] Berenstein C. A., Gay R., “Le problème de Pompeiu locale”, J. Anal. Math., 52 (1989), 133–166 | DOI | MR | Zbl
[14] Berenstein C. A., Gay R., Yger A., “Inversion of the local Pompeiu transform”, J. Anal. Math., 54 (1990), 259–287 | DOI | MR | Zbl
[15] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl
[16] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991 | MR | Zbl
[17] Korenev B. G., Vvedenie v teoriyu besselevykh funktsii, Nauka, M., 1971 | MR | Zbl
[18] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1976 | MR
[19] Khua Lo-Ken, Garmonicheskii analiz funktsii mnogikh kompleksnykh peremennykh v klassicheskikh oblastyakh, IL, M., 1959
[20] Tolstov G. P., Ryady Fure, Nauka, M., 1980 | MR | Zbl
[21] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M., 1987 | MR
[22] Khermander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965 | MR
[23] Khavin V. P., “Metody i struktura kommutativnogo garmonicheskogo analiza”, Itogi nauki i tekhn. Sovr. probl. matem. Fundam. napr., 15, VINITI, M., 1986, 6–134
[24] Palamodov V. P., “Obobschennye funktsii i garmonicheskii analiz”, Itogi nauki i tekhn. Sovr. probl. matem. Fundam. napr., 72, VINITI, M., 1991, 5–134 | MR