@article{SM_1999_190_10_a4,
author = {A. N. Sobolevskii},
title = {Periodic solutions of the {Hamilton{\textendash}Jacobi} equation with a~periodic non-homogeneous term and {Aubry{\textendash}Mather} theory},
journal = {Sbornik. Mathematics},
pages = {1487--1504},
year = {1999},
volume = {190},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_10_a4/}
}
TY - JOUR AU - A. N. Sobolevskii TI - Periodic solutions of the Hamilton–Jacobi equation with a periodic non-homogeneous term and Aubry–Mather theory JO - Sbornik. Mathematics PY - 1999 SP - 1487 EP - 1504 VL - 190 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_1999_190_10_a4/ LA - en ID - SM_1999_190_10_a4 ER -
A. N. Sobolevskii. Periodic solutions of the Hamilton–Jacobi equation with a periodic non-homogeneous term and Aubry–Mather theory. Sbornik. Mathematics, Tome 190 (1999) no. 10, pp. 1487-1504. http://geodesic.mathdoc.fr/item/SM_1999_190_10_a4/
[1] Crandall M. G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277 (1983), 1–42 | DOI | MR | Zbl
[2] Aubry S., “The twist map, the extended Frenkel–Kontorova model and the devil's staircase”, Physica D, 7 (1983), 240–258 | DOI | MR
[3] Aubry S., Le Daeron P. Y., “The discrete Frenkel–Kontorova model and its extensions. I: Exact results for the ground states”, Physica D, 8 (1983), 381–422 | DOI | MR
[4] Mather J. N., “Existence of quasi-periodic orbits for twist homeomorphisms of the annulus”, Topology, 21 (1982), 457–467 | DOI | MR | Zbl
[5] Sobolevskii A. N., “O periodicheskikh resheniyakh uravneniya Gamiltona–Yakobi s periodicheskoi siloi”, UMN, 53:6 (1998), 265–266 | MR | Zbl
[6] Jauslin H. R., Kreiss H. O., Moser J., On the forced Burgers equation with periodic boundary conditions, Preprint, 1997 | MR
[7] E W., “Aubry–Mather theory and periodic solutions of the forced Burgers equation”, Comm. Pure Appl. Math., 52:7 (1999), 811–828 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[8] Cesari L., Optimization – theory and applications. Problems with ordinary differential equations, Springer-Verlag, New York, 1983 | MR
[9] Lions P.-L., Generalized solutions of Hamilton–Jacobi equations, Pitman, Boston, 1982 | MR
[10] Mather J. N., Forni G., “Action minimizing orbits in Hamiltonian systems”, Lecture Notes in Math., 1589, 1994, 92–186 | MR | Zbl
[11] Birkhoff G. D., “Quelques théorèmes sur les mouvements des systèmes dynamiques”, Bull. Soc. Math. France, 40 (1912) | Zbl