Projective splitting obstruction groups for one-sided submanifolds
Sbornik. Mathematics, Tome 190 (1999) no. 10, pp. 1465-1485

Voir la notice de l'article provenant de la source Math-Net.Ru

A geometric diagram of groups, which consists of groups equipped with geometric antistructures, is a natural generalization of the square of fundamental groups arising in the splitting problem for a one-sided submanifold. In the present paper the groups $LS_*$ and $LP_*$ of such diagrams are defined and the properties of these groups are described. Methods for the computation of $LS_*^p$, $LP_*^p$-groups and natural maps in diagrams of exact sequences are developed in the case of a geometric diagram of finite 2-groups.
@article{SM_1999_190_10_a3,
     author = {Yu. V. Muranov and I. Hambleton},
     title = {Projective splitting obstruction groups for one-sided submanifolds},
     journal = {Sbornik. Mathematics},
     pages = {1465--1485},
     publisher = {mathdoc},
     volume = {190},
     number = {10},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_10_a3/}
}
TY  - JOUR
AU  - Yu. V. Muranov
AU  - I. Hambleton
TI  - Projective splitting obstruction groups for one-sided submanifolds
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1465
EP  - 1485
VL  - 190
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_10_a3/
LA  - en
ID  - SM_1999_190_10_a3
ER  - 
%0 Journal Article
%A Yu. V. Muranov
%A I. Hambleton
%T Projective splitting obstruction groups for one-sided submanifolds
%J Sbornik. Mathematics
%D 1999
%P 1465-1485
%V 190
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1999_190_10_a3/
%G en
%F SM_1999_190_10_a3
Yu. V. Muranov; I. Hambleton. Projective splitting obstruction groups for one-sided submanifolds. Sbornik. Mathematics, Tome 190 (1999) no. 10, pp. 1465-1485. http://geodesic.mathdoc.fr/item/SM_1999_190_10_a3/