@article{SM_1999_190_10_a3,
author = {Yu. V. Muranov and I. Hambleton},
title = {Projective splitting obstruction groups for one-sided submanifolds},
journal = {Sbornik. Mathematics},
pages = {1465--1485},
year = {1999},
volume = {190},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_10_a3/}
}
Yu. V. Muranov; I. Hambleton. Projective splitting obstruction groups for one-sided submanifolds. Sbornik. Mathematics, Tome 190 (1999) no. 10, pp. 1465-1485. http://geodesic.mathdoc.fr/item/SM_1999_190_10_a3/
[1] Wall C. T. C., Surgery on compact manifolds, Academic Press, London, 1970 | MR
[2] Ranicki A. A., Exact sequences in the algebraic theory of surgery, Princeton Univ. Press, Princeton, 1981 | MR | Zbl
[3] Browder W., Livesay G. R., “Fixed point free involutions on homotopy spheres”, Bull. Amer. Math. Soc., 73 (1967), 242–245 | DOI | MR | Zbl
[4] Lopez de Medrano S., Involutions on manifolds, Springer-Verlag, Berlin, 1971 | MR | Zbl
[5] Cappell S. E., Shaneson J. L., “Pseudo-free actions”, Lecture Notes in Math., 763, 1979, 395–447 | MR | Zbl
[6] Hambleton I., “Projective surgery obstructions on closed manifolds”, Lecture Notes in Math., 967, 1982, 101–131 | MR | Zbl
[7] Akhmetev P. M., “Rasscheplenie gomotopicheskikh ekvivalentnostei vdol odnostoronnego podmnogoobraziya korazmernosti 1”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 211–241 | MR | Zbl
[8] Kharshiladze A. F., “Obobschennyi invariant Braudera–Livsi”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 379–401 | MR | Zbl
[9] Muranov Yu. V., “Gruppy prepyatstvii k rasschepleniyu i kvadratichnye rasshireniya antistruktur”, Izv. RAN. Ser. matem., 59:6 (1995), 107–132 | MR | Zbl
[10] Muranov Yu. V., Repovsh D., “Gruppy prepyatstvii k perestroikam i rasschepleniyam dlya pary mnogoobrazii”, Matem. sb., 188:3 (1997), 127–142 | MR | Zbl
[11] Ranicki A., “The L-theory of twisted quadratic extensions”, Canad. J. Math., 39 (1987), 345–364 | MR | Zbl
[12] Hambleton I., Taylor L. R., Williams B., “An introduction to maps between surgery obstruction groups”, Lecture Notes in Math., 1051, 1984, 49–127 | MR | Zbl
[13] Hambleton I., Taylor L. R., Williams B., “Detection theorems for K-theory and L-theory”, J. Pure Appl. Algebra, 63 (1990), 247–299 | DOI | MR | Zbl
[14] Wall C. T. C., “On the classification of Hermitian forms. VI: Group rings”, Ann. of Math. (2), 103 (1976), 1–80 | DOI | MR | Zbl
[15] Hambleton I., Madsen I., “On the computation of the projective surgery obstruction groups”, K-Theory, 7:6 (1993), 537–574 | DOI | MR | Zbl
[16] Wall C. T. C., “Formulae for surgery obstructions”, Topology, 15 (1976), 189–210 | DOI | MR | Zbl
[17] Novikov S. P., “Algebraicheskaya konstruktsiya i svoistva ermitovykh analogov K-teorii dlya kolets s involyutsiei”, Izv. AN SSSR. Ser. matem., 34:2 (1970), 253–288 | Zbl
[18] Wall C. T. C., “Foundations of algebraic L-theory”, Lecture Notes in Math., 343, 1973, 266–300 | MR | Zbl
[19] Wall C. T. C., “On the axiomatic foundation of the theory of Hermitian forms”, Proc. Cambridge Philos. Soc., 67 (1970), 243–250 | DOI | MR | Zbl
[20] Hambleton I., Ranicki A., Taylor L., “Round L-theory”, J. Pure Appl. Algebra, 47 (1987), 131–154 | DOI | MR | Zbl
[21] Muranov Yu. V., “Otnositelnye gruppy Uolla i dekoratsii”, Matem. sb., 185:12 (1994), 79–100 | Zbl