Averaging of Fourier–Haar coefficients
Sbornik. Mathematics, Tome 190 (1999) no. 10, pp. 1449-1463 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An operator defined by averaging of the Fourier–Haar coefficients of a function is studied. A criterion for the boundedness of such an operator acting in a pair of rearrangement-invariant spaces is derived.
@article{SM_1999_190_10_a2,
     author = {S. Montgomery-Smith and E. M. Semenov},
     title = {Averaging of {Fourier{\textendash}Haar} coefficients},
     journal = {Sbornik. Mathematics},
     pages = {1449--1463},
     year = {1999},
     volume = {190},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_10_a2/}
}
TY  - JOUR
AU  - S. Montgomery-Smith
AU  - E. M. Semenov
TI  - Averaging of Fourier–Haar coefficients
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1449
EP  - 1463
VL  - 190
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_10_a2/
LA  - en
ID  - SM_1999_190_10_a2
ER  - 
%0 Journal Article
%A S. Montgomery-Smith
%A E. M. Semenov
%T Averaging of Fourier–Haar coefficients
%J Sbornik. Mathematics
%D 1999
%P 1449-1463
%V 190
%N 10
%U http://geodesic.mathdoc.fr/item/SM_1999_190_10_a2/
%G en
%F SM_1999_190_10_a2
S. Montgomery-Smith; E. M. Semenov. Averaging of Fourier–Haar coefficients. Sbornik. Mathematics, Tome 190 (1999) no. 10, pp. 1449-1463. http://geodesic.mathdoc.fr/item/SM_1999_190_10_a2/

[1] Hardy G. G., “Notes on some points of the integral calculus”, Messenger of Math., 58 (1928), 50–52 | Zbl

[2] Bellman R., “Note on a theorem of Hardy on Fouries constant”, Bull. Amer. Soc., 50 (1944), 741–744 | DOI | MR | Zbl

[3] Golubov B. I., “Ob odnoi teoreme Bellmana o koeffitsientakh Fure”, Matem. sb., 185:11 (1994), 31–40 | MR | Zbl

[4] Lindenstrauss J., Tzafriri L., Classical Banach spaces. Function spaces, Springer-Verlag, Berlin, 1979 | MR | Zbl

[5] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[6] Rodin V. A., “K voprosu o preobrazovanii Khardi prostranstva VMO”, Phystech J., 3:4 (1997), 79–83

[7] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl

[8] Golubov B. I., “Ryady po sisteme Khaara”, Itogi nauki i tekhn. Matem. analiz 1970, VINITI, M., 1971, 109–146 | MR | Zbl

[9] Novikov I. Ya., Semenov E. M., Haar series and linear operators, Kluwer Acad. Publ., Dordrecht, 1997 | MR | Zbl

[10] Lindenstrauss J., Tzafriri L., Classical Banach spaces. Sequence spaces, Springer-Verlag, Berlin, 1977 | MR

[11] Kakhan Zh.-P., Sluchainye funktsionalnye ryady, Mir, M., 1973 | MR | Zbl

[12] Rodin V. A., Semenov E. M., “Rademacher series in symmetric spaces”, Anal. Math., 1:3 (1975), 207–222 | DOI | MR | Zbl