Convergence of regularized traces of powers of the Laplace–Beltrami operator with potential on the sphere $S^n$
Sbornik. Mathematics, Tome 190 (1999) no. 10, pp. 1401-1415 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the Laplace–Beltrami operator $-\Delta$ on the sphere $S^n$ perturbed by the operator of multiplication by an infinitely smooth complex-valued function $q$, the convergence without brackets of regularized traces $$ \sum_k\biggl(\mu_k^\alpha -\lambda_k^\alpha-\sum_j\chi_j(\alpha )\lambda_k^{k_j(\alpha)}\biggr), $$ is studied, where the $\mu_k$ and the $\lambda_k$ are the eigenvalues of the operators $-\Delta+q$ and $-\Delta$, respectively. Sharp estimates of $\alpha$ in the cases of absolute and conditional convergence are obtained. Explicit formulae for the coefficients $\chi_j$ are obtained for odd potentials $q$.
@article{SM_1999_190_10_a0,
     author = {A. N. Bobrov and V. E. Podolskii},
     title = {Convergence of regularized traces of powers of {the~Laplace{\textendash}Beltrami} operator with potential on the sphere~$S^n$},
     journal = {Sbornik. Mathematics},
     pages = {1401--1415},
     year = {1999},
     volume = {190},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_10_a0/}
}
TY  - JOUR
AU  - A. N. Bobrov
AU  - V. E. Podolskii
TI  - Convergence of regularized traces of powers of the Laplace–Beltrami operator with potential on the sphere $S^n$
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1401
EP  - 1415
VL  - 190
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_10_a0/
LA  - en
ID  - SM_1999_190_10_a0
ER  - 
%0 Journal Article
%A A. N. Bobrov
%A V. E. Podolskii
%T Convergence of regularized traces of powers of the Laplace–Beltrami operator with potential on the sphere $S^n$
%J Sbornik. Mathematics
%D 1999
%P 1401-1415
%V 190
%N 10
%U http://geodesic.mathdoc.fr/item/SM_1999_190_10_a0/
%G en
%F SM_1999_190_10_a0
A. N. Bobrov; V. E. Podolskii. Convergence of regularized traces of powers of the Laplace–Beltrami operator with potential on the sphere $S^n$. Sbornik. Mathematics, Tome 190 (1999) no. 10, pp. 1401-1415. http://geodesic.mathdoc.fr/item/SM_1999_190_10_a0/

[1] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR

[2] Guillemin V., “Some spectral results on rank one symmetric spaces”, Adv. Math., 28 (1978), 129–137 | DOI | MR | Zbl

[3] Guillemin V., “An addentum: some spectral results on rank one symmetric spaces”, Adv. Math., 28 (1978), 138–147 | DOI | MR | Zbl

[4] Guillemin V., “Some spectral results for the Laplace operator with potential on the $n$-sphere”, Adv. Math., 27 (1978), 273–286 | DOI | MR | Zbl

[5] Guillemin V., “Band asymptotics in two dimensions”, Adv. Math., 42 (1981), 248–282 | DOI | MR | Zbl

[6] Besse A., Mnogoobraziya s zamknutymi geodezicheskimi, Mir, M., 1980 | MR

[7] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[8] Widom H., “The Laplace operator with potential on the $2$-sphere”, Adv. Math., 31 (1979), 63–66 | DOI | MR | Zbl

[9] Sadovnichii V. A., Dubrovskii V. V., “Klassicheskaya formula regulyarizovannogo sleda operatora Laplasa–Beltrami s nechetnym potentsialom na sfere $S^2$”, Dokl. AN SSSR, 319:1 (1991), 61–62 | MR

[10] Podolskii V. E., “Formula regulyarizovannogo sleda operatora Laplasa–Beltrami s nechetnym potentsialom na sfere $S^2$”, Matem. zametki, 56:1 (1994), 71–77 | MR | Zbl

[11] Podol'skii V. E., “On the summability of regularized sums of eigenvalues of the Laplace–Beltrami operator with potential on symmetric spaces of rank one”, Russian J. Math. Phys., 4:1 (1996), 123–130 | MR

[12] Lyubishkin V. A., Podolskii V. E., “O summiruemosti regulyarizovannykh sledov differentsialnykh operatorov”, Matem. zametki, 54:2 (1993), 33–37 | MR

[13] Bobrov A. N., “Regulyarizovannye sledy vysshikh poryadkov operatora Laplasa–Beltrami s potentsialom na simmetricheskikh prostranstvakh ranga 1”, Differents. uravneniya, 33:6 (1997), 800–804 | MR | Zbl

[14] Bobrov A. N., Podolskii V. E., “O skhodimosti sleda stepeni operatora Laplasa–Beltrami s potentsialom na sfere $S^n$”, Funkts. analiz i ego prilozh., 31:4 (1997), 69–72 | MR | Zbl

[15] Guillemin V., Uribe A., “Spectral properties of a certain class of complex potentials”, Trans. Amer. Math. Soc., 279:2 (1983), 759–771 | DOI | MR | Zbl

[16] Colin de Verdiere Y., “Sur le spectre des operáteurs elliptiques à bicaractéristiques toutes périodiques”, Comment. Math. Helv., 54 (1979), 508–522 | DOI | MR | Zbl

[17] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. T. 4. Integralnye operatory Fure, Mir, M., 1988 | MR