Convergence of regularized traces of powers of the~Laplace--Beltrami operator with potential on the sphere~$S^n$
Sbornik. Mathematics, Tome 190 (1999) no. 10, pp. 1401-1415
Voir la notice de l'article provenant de la source Math-Net.Ru
For the Laplace–Beltrami operator $-\Delta$ on the sphere $S^n$ perturbed by the operator of multiplication by an infinitely smooth complex-valued function $q$, the convergence without brackets of regularized traces
$$
\sum_k\biggl(\mu_k^\alpha -\lambda_k^\alpha-\sum_j\chi_j(\alpha )\lambda_k^{k_j(\alpha)}\biggr),
$$
is studied, where the $\mu_k$ and the $\lambda_k$ are the eigenvalues of the operators $-\Delta+q$ and $-\Delta$, respectively. Sharp estimates of $\alpha$ in the cases of absolute and conditional convergence are obtained. Explicit formulae for the coefficients $\chi_j$ are obtained for odd potentials $q$.
@article{SM_1999_190_10_a0,
author = {A. N. Bobrov and V. E. Podolskii},
title = {Convergence of regularized traces of powers of {the~Laplace--Beltrami} operator with potential on the sphere~$S^n$},
journal = {Sbornik. Mathematics},
pages = {1401--1415},
publisher = {mathdoc},
volume = {190},
number = {10},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_10_a0/}
}
TY - JOUR AU - A. N. Bobrov AU - V. E. Podolskii TI - Convergence of regularized traces of powers of the~Laplace--Beltrami operator with potential on the sphere~$S^n$ JO - Sbornik. Mathematics PY - 1999 SP - 1401 EP - 1415 VL - 190 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1999_190_10_a0/ LA - en ID - SM_1999_190_10_a0 ER -
%0 Journal Article %A A. N. Bobrov %A V. E. Podolskii %T Convergence of regularized traces of powers of the~Laplace--Beltrami operator with potential on the sphere~$S^n$ %J Sbornik. Mathematics %D 1999 %P 1401-1415 %V 190 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1999_190_10_a0/ %G en %F SM_1999_190_10_a0
A. N. Bobrov; V. E. Podolskii. Convergence of regularized traces of powers of the~Laplace--Beltrami operator with potential on the sphere~$S^n$. Sbornik. Mathematics, Tome 190 (1999) no. 10, pp. 1401-1415. http://geodesic.mathdoc.fr/item/SM_1999_190_10_a0/