Spectral synthesis for systems of differential operators with constant coefficients. Duality theorem
Sbornik. Mathematics, Tome 189 (1998) no. 9, pp. 1423-1440 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Most known papers on spectral synthesis in complex domains are based on transitions from problems of spectral synthesis to equivalent problems of local description. As a rule, such a transition is carried out in the framework of some special assumptions and meets considerable difficulties. A general method developed in this paper enables one to verify the duality theorem in the setting of several complex variables, when each operator $\pi _p(D)$, $p=1,\dots,q$, acts with respect to a single variable. These assumptions cover the case of a system of partial differential operators. The duality transition here breaks into three separate steps. Two of them are connected with classical results of the theory of analytic functions and only one relates to general duality theory. This allows one to speak about singling out the analytic component of the transition from a spectral synthesis problem to an equivalent problem of local description.
@article{SM_1998_189_9_a5,
     author = {A. B. Shishkin},
     title = {Spectral synthesis for systems of differential operators with constant coefficients. {Duality} theorem},
     journal = {Sbornik. Mathematics},
     pages = {1423--1440},
     year = {1998},
     volume = {189},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_9_a5/}
}
TY  - JOUR
AU  - A. B. Shishkin
TI  - Spectral synthesis for systems of differential operators with constant coefficients. Duality theorem
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1423
EP  - 1440
VL  - 189
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_9_a5/
LA  - en
ID  - SM_1998_189_9_a5
ER  - 
%0 Journal Article
%A A. B. Shishkin
%T Spectral synthesis for systems of differential operators with constant coefficients. Duality theorem
%J Sbornik. Mathematics
%D 1998
%P 1423-1440
%V 189
%N 9
%U http://geodesic.mathdoc.fr/item/SM_1998_189_9_a5/
%G en
%F SM_1998_189_9_a5
A. B. Shishkin. Spectral synthesis for systems of differential operators with constant coefficients. Duality theorem. Sbornik. Mathematics, Tome 189 (1998) no. 9, pp. 1423-1440. http://geodesic.mathdoc.fr/item/SM_1998_189_9_a5/

[1] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. 1: Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 87(129) (1972), 459–482

[2] Schwartz L., “Theorie generale des fonctions moyenne-periodiques”, Ann. of Math. (2), 48 (1947), 857–929 | DOI | MR | Zbl

[3] Shishkin A. B., “Voprosy dvoistvennosti, svyazannye s zadachei spektralnogo sinteza dlya operatora $D$”, Sovr. problemy matem. analiza, VINITI, 1987, 117–133

[4] Merzlyakov S. G., “O podprostranstvakh analiticheskikh funktsii, invariantnykh otnositelno operatora kratnogo differentsirovaniya”, Matem. zametki, 40:5 (1986), 635–639 | MR | Zbl

[5] Krasichkov-Ternovskii I. F., “Spektralnyi sintez v kompleksnoi oblasti dlya differentsialnogo operatora s postoyannymi koeffitsientami. 1: Teorema dvoistvennosti”, Matem. sb., 182:11 (1991), 1559–1588

[6] Shishkin A. B., “Spektralnyi sintez dlya sistem differentsialnykh operatorov s postoyannymi koeffitsientami”, Dokl. AN, 355:1 (1997), 28–30 | MR | Zbl

[7] Ehrenpreis L., “Mean periodic functions”, Amer. J. Math., 77:2 (1955), 293–326 | DOI | MR

[8] Malgrange B., “Existence et approximation des solutions des equations aux derivees partielles et des equations de convolution”, Ann. Inst. Fourier (Grenoble), 6 (1955–1956), 271–355 | MR

[9] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR

[10] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969

[11] Robertson A., Robertson V., Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl

[12] Ganning R., Rossi Kh., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR

[13] Krasichkov-Ternovskii I. F., “Lokalnoe opisanie zamknutykh idealov i podmodulei analiticheskikh funktsii odnoi peremennoi, 1”, Izv. AN SSSR. Ser. matem., 43:1 (1979), 44–66 | MR

[14] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR