Best constants in a~class of polymultiplicative inequalities for derivatives
Sbornik. Mathematics, Tome 189 (1998) no. 9, pp. 1335-1359

Voir la notice de l'article provenant de la source Math-Net.Ru

Best constants are found in a class of multiplicative inequalities with $k$ factors that give an estimate of the $C$-norm of a function (in $\mathbb R^n$ or on $\mathbb S^n$) in terms of the product of the $L_2$-norms of fractional powers of the Laplace operator. Special attention is given to the detection of the cases of equality of the corresponding constants on the sphere and in Euclidean space.
@article{SM_1998_189_9_a2,
     author = {A. A. Ilyin},
     title = {Best constants in a~class of polymultiplicative inequalities for derivatives},
     journal = {Sbornik. Mathematics},
     pages = {1335--1359},
     publisher = {mathdoc},
     volume = {189},
     number = {9},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_9_a2/}
}
TY  - JOUR
AU  - A. A. Ilyin
TI  - Best constants in a~class of polymultiplicative inequalities for derivatives
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1335
EP  - 1359
VL  - 189
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_9_a2/
LA  - en
ID  - SM_1998_189_9_a2
ER  - 
%0 Journal Article
%A A. A. Ilyin
%T Best constants in a~class of polymultiplicative inequalities for derivatives
%J Sbornik. Mathematics
%D 1998
%P 1335-1359
%V 189
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_9_a2/
%G en
%F SM_1998_189_9_a2
A. A. Ilyin. Best constants in a~class of polymultiplicative inequalities for derivatives. Sbornik. Mathematics, Tome 189 (1998) no. 9, pp. 1335-1359. http://geodesic.mathdoc.fr/item/SM_1998_189_9_a2/