Best constants in a class of polymultiplicative inequalities for derivatives
Sbornik. Mathematics, Tome 189 (1998) no. 9, pp. 1335-1359 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Best constants are found in a class of multiplicative inequalities with $k$ factors that give an estimate of the $C$-norm of a function (in $\mathbb R^n$ or on $\mathbb S^n$) in terms of the product of the $L_2$-norms of fractional powers of the Laplace operator. Special attention is given to the detection of the cases of equality of the corresponding constants on the sphere and in Euclidean space.
@article{SM_1998_189_9_a2,
     author = {A. A. Ilyin},
     title = {Best constants in a~class of polymultiplicative inequalities for derivatives},
     journal = {Sbornik. Mathematics},
     pages = {1335--1359},
     year = {1998},
     volume = {189},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_9_a2/}
}
TY  - JOUR
AU  - A. A. Ilyin
TI  - Best constants in a class of polymultiplicative inequalities for derivatives
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1335
EP  - 1359
VL  - 189
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_9_a2/
LA  - en
ID  - SM_1998_189_9_a2
ER  - 
%0 Journal Article
%A A. A. Ilyin
%T Best constants in a class of polymultiplicative inequalities for derivatives
%J Sbornik. Mathematics
%D 1998
%P 1335-1359
%V 189
%N 9
%U http://geodesic.mathdoc.fr/item/SM_1998_189_9_a2/
%G en
%F SM_1998_189_9_a2
A. A. Ilyin. Best constants in a class of polymultiplicative inequalities for derivatives. Sbornik. Mathematics, Tome 189 (1998) no. 9, pp. 1335-1359. http://geodesic.mathdoc.fr/item/SM_1998_189_9_a2/

[1] Arestov V. V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, UMN, 51:6 (1996), 89–124 | MR | Zbl

[2] Magaril-Ilyaev G. G., Tikhomirov V. M., “O neravenstvakh dlya proizvodnykh kolmogorovskogo tipa”, Matem. sb., 188:12 (1997), 73–106 | MR | Zbl

[3] Taikov L. V., “Neravenstva tipa Kolmogorova i nailuchshie formuly chislennogo differentsirovaniya”, Matem. zametki, 4:2 (1968), 233–238 | MR | Zbl

[4] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[5] Magaril-Ilyaev G. G., “Zadacha o promezhutochnoi proizvodnoi”, Matem. zametki, 25:1 (1979), 81–96 | MR | Zbl

[6] Buslaev A. P, Tikhomirov V. M., “O neravenstvakh dlya proizvodnykh v mnogomernom sluchae”, Matem. zametki, 25:1 (1979), 59–73 | MR | Zbl

[7] Beckner W., “Sharp Sobolev inequalities and the Moser–Trudinger inequality”, Ann. Math., 138 (1993), 217–242 | DOI | MR

[8] Pearson J. M., “Best constants in Sobolev inequalities for ultraspherical polynomials”, Arch. Rational Mech. Anal., 116 (1991), 361–374 | DOI | MR | Zbl

[9] Xie W., “Integral representations and $L^\infty$ bounds for solutions of the Helmholtz equation on arbitrary open sets in $\mathbb R^2$ and $\mathbb R^3$”, Differential Integral Equations, 8:3 (1995), 689–698 | MR | Zbl

[10] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR

[11] Khardi G., Littlvud Dzh., Polia G., Neravenstva, IL, M., 1948

[12] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[13] Ilyin A. A., “Best constants in multiplicative inequalities for sup-norms”, J. London Math. Soc., 1998 (to appear) | MR

[14] Ilyin A. A., “Best constants in Sobolev inequalities on the sphere and in Euclidean space”, J. London Math. Soc., 1998 (to appear) | MR

[15] Titchmarsh E. Ch., Teoriya funktsii, GITTL, M.–L., 1951

[16] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl