Deformations of non-compact complex curves and envelopes of meromorphy of spheres
Sbornik. Mathematics, Tome 189 (1998) no. 9, pp. 1295-1333

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper discusses the properties of the envelopes of meromorphy of neighbourhoods of symplectically immersed two-spheres in complex Kahler surfaces. The method used to study the envelopes of meromorphy is based on Gromov's theory of pseudoholomorphic curves. The exposition includes a construction of a complete family of holomorphic deformations of a non-compact complex curve in a complex manifold parametrized by a finite-codimensional analytic subset of a Banach ball. The existence of this family is used to prove a generalization of Levi's continuity principle, which is applied to describe envelopes of meromorphy.
@article{SM_1998_189_9_a1,
     author = {S. M. Ivashkovich and V. V. Shevchishin},
     title = {Deformations of non-compact complex curves and envelopes of meromorphy of spheres},
     journal = {Sbornik. Mathematics},
     pages = {1295--1333},
     publisher = {mathdoc},
     volume = {189},
     number = {9},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_9_a1/}
}
TY  - JOUR
AU  - S. M. Ivashkovich
AU  - V. V. Shevchishin
TI  - Deformations of non-compact complex curves and envelopes of meromorphy of spheres
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1295
EP  - 1333
VL  - 189
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_9_a1/
LA  - en
ID  - SM_1998_189_9_a1
ER  - 
%0 Journal Article
%A S. M. Ivashkovich
%A V. V. Shevchishin
%T Deformations of non-compact complex curves and envelopes of meromorphy of spheres
%J Sbornik. Mathematics
%D 1998
%P 1295-1333
%V 189
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_9_a1/
%G en
%F SM_1998_189_9_a1
S. M. Ivashkovich; V. V. Shevchishin. Deformations of non-compact complex curves and envelopes of meromorphy of spheres. Sbornik. Mathematics, Tome 189 (1998) no. 9, pp. 1295-1333. http://geodesic.mathdoc.fr/item/SM_1998_189_9_a1/