Deformations of non-compact complex curves and envelopes of meromorphy of spheres
Sbornik. Mathematics, Tome 189 (1998) no. 9, pp. 1295-1333 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper discusses the properties of the envelopes of meromorphy of neighbourhoods of symplectically immersed two-spheres in complex Kahler surfaces. The method used to study the envelopes of meromorphy is based on Gromov's theory of pseudoholomorphic curves. The exposition includes a construction of a complete family of holomorphic deformations of a non-compact complex curve in a complex manifold parametrized by a finite-codimensional analytic subset of a Banach ball. The existence of this family is used to prove a generalization of Levi's continuity principle, which is applied to describe envelopes of meromorphy.
@article{SM_1998_189_9_a1,
     author = {S. M. Ivashkovich and V. V. Shevchishin},
     title = {Deformations of non-compact complex curves and envelopes of meromorphy of spheres},
     journal = {Sbornik. Mathematics},
     pages = {1295--1333},
     year = {1998},
     volume = {189},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_9_a1/}
}
TY  - JOUR
AU  - S. M. Ivashkovich
AU  - V. V. Shevchishin
TI  - Deformations of non-compact complex curves and envelopes of meromorphy of spheres
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1295
EP  - 1333
VL  - 189
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_9_a1/
LA  - en
ID  - SM_1998_189_9_a1
ER  - 
%0 Journal Article
%A S. M. Ivashkovich
%A V. V. Shevchishin
%T Deformations of non-compact complex curves and envelopes of meromorphy of spheres
%J Sbornik. Mathematics
%D 1998
%P 1295-1333
%V 189
%N 9
%U http://geodesic.mathdoc.fr/item/SM_1998_189_9_a1/
%G en
%F SM_1998_189_9_a1
S. M. Ivashkovich; V. V. Shevchishin. Deformations of non-compact complex curves and envelopes of meromorphy of spheres. Sbornik. Mathematics, Tome 189 (1998) no. 9, pp. 1295-1333. http://geodesic.mathdoc.fr/item/SM_1998_189_9_a1/

[1] Ivashkovich S. M., “Prodolzhenie analiticheskikh ob'ektov metodom Kartana–Tullena”, Trudy konferentsii po kompleksnomu analizu i matematicheskoi fizike, Krasnoyarsk, 1988, 53–61 | MR | Zbl

[2] Ivashkovich S., Shevchishin V., Pseudo-holomorphic curves and envelopes of meromorphy of two-spheres in $\mathbb{CP}^2$, Preprint. Bochum SFB-237, 1995; http://xxx.lanl.gov/9804014

[3] Barth W., Peters C., Van de Ven A., Compact complex sufaces, Springer-Verlag, Berlin, 1984 | MR | Zbl

[4] Grauert H., “Über Modifikationen und exzeptionelle analytische Mengen”, Math. Ann., 146 (1962), 331–368 | DOI | MR

[5] Nemirovskii S. Yu., “Golomorfnye funktsii i vlozhennye veschestvennye poverkhnosti”, Matem. zametki, 63:4 (1998), 599–606 | MR | Zbl

[6] Gromov M., “Pseudo holomorphic curves in symplectic manifolds”, Invent. Math., 82 (1985), 307–347 | DOI | MR | Zbl

[7] Morrey C. B., Multiple integrals in the calculus of variations, Springer-Verlag, New-York, 1966 | MR | Zbl

[8] Abikof U., Veschestvenno analiticheskaya teoriya prostranstva Teikhmyullera, Mir, M., 1985 | MR | Zbl

[9] McDuff D., Salomon D., $J$-holomorphic curves and quantum cohomology, AMS Univ. Lecture Series, 6, 1994 | MR | Zbl

[10] Kobayasi S., Nomidzu K., Osnovy differentsialnoi geometrii, T. II, Nauka, M., 1981

[11] Hofer H., Lizan V., Sikorav J.-C., On genericity for holomorphic curves in $4$-dimensional almost-complex manifolds, Preprint, 1994

[12] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1989 | MR

[13] Parker T., Wolfson J., “Pseudo-holomorphic maps and bubble trees”, J. Geom. Anal., 3 (1993), 63–98 | MR | Zbl

[14] Hummel Chr., Gromov's compactness theorem for pseudo-holomorphic curves, Birkäuser, Basel, 1997 | Zbl

[15] Ramis J.-P., Sous-ensembles analytiques d'une veriété banachique complexe, Springer-Verlag, Berlin, 1970 | MR | Zbl