Deformations of non-compact complex curves and envelopes of meromorphy of spheres
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 189 (1998) no. 9, pp. 1295-1333
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper discusses the properties of the envelopes of meromorphy of neighbourhoods of symplectically immersed two-spheres in complex Kahler surfaces. The method used to study the envelopes of meromorphy is based on Gromov's theory  of pseudoholomorphic curves. The exposition includes a construction of a complete family of holomorphic deformations of a non-compact complex curve in a complex manifold parametrized by a finite-codimensional analytic subset of a Banach ball. The existence of this family is used to prove a generalization of Levi's continuity principle, which is applied to describe envelopes of meromorphy.
			
            
            
            
          
        
      @article{SM_1998_189_9_a1,
     author = {S. M. Ivashkovich and V. V. Shevchishin},
     title = {Deformations of non-compact complex curves and envelopes of meromorphy of spheres},
     journal = {Sbornik. Mathematics},
     pages = {1295--1333},
     publisher = {mathdoc},
     volume = {189},
     number = {9},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_9_a1/}
}
                      
                      
                    TY - JOUR AU - S. M. Ivashkovich AU - V. V. Shevchishin TI - Deformations of non-compact complex curves and envelopes of meromorphy of spheres JO - Sbornik. Mathematics PY - 1998 SP - 1295 EP - 1333 VL - 189 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1998_189_9_a1/ LA - en ID - SM_1998_189_9_a1 ER -
S. M. Ivashkovich; V. V. Shevchishin. Deformations of non-compact complex curves and envelopes of meromorphy of spheres. Sbornik. Mathematics, Tome 189 (1998) no. 9, pp. 1295-1333. http://geodesic.mathdoc.fr/item/SM_1998_189_9_a1/
