Stabilization of the solutions of the wave equation in domains with non-compact boundaries
Sbornik. Mathematics, Tome 189 (1998) no. 8, pp. 1251-1272 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic behaviour (for large values of time) of the solutions of the first mixed boundary-value problem for the wave equation in domains with non-compact, non-star-shaped boundaries is considered. Estimates with respect to the spectral parameter of the solutions of the first boundary-value problem for the Helmholtz equation are obtained.
@article{SM_1998_189_8_a6,
     author = {A. V. Filinovskii},
     title = {Stabilization of the~solutions of the~wave equation in domains with non-compact boundaries},
     journal = {Sbornik. Mathematics},
     pages = {1251--1272},
     year = {1998},
     volume = {189},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_8_a6/}
}
TY  - JOUR
AU  - A. V. Filinovskii
TI  - Stabilization of the solutions of the wave equation in domains with non-compact boundaries
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1251
EP  - 1272
VL  - 189
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_8_a6/
LA  - en
ID  - SM_1998_189_8_a6
ER  - 
%0 Journal Article
%A A. V. Filinovskii
%T Stabilization of the solutions of the wave equation in domains with non-compact boundaries
%J Sbornik. Mathematics
%D 1998
%P 1251-1272
%V 189
%N 8
%U http://geodesic.mathdoc.fr/item/SM_1998_189_8_a6/
%G en
%F SM_1998_189_8_a6
A. V. Filinovskii. Stabilization of the solutions of the wave equation in domains with non-compact boundaries. Sbornik. Mathematics, Tome 189 (1998) no. 8, pp. 1251-1272. http://geodesic.mathdoc.fr/item/SM_1998_189_8_a6/

[1] Morawetz C. S., “The decay of solutions of the exterior initial-boundary value problem for the wave equation”, Comm. Pure Appl. Math., 14:3 (1961), 561–568 | DOI | MR | Zbl

[2] Morawetz C. S., “The limiting amplitude principle”, Comm. Pure Appl. Math., 15:3 (1962), 349–361 | DOI | MR | Zbl

[3] Lax P. D., Morawetz C. S., Phillips R. S., “Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle”, Comm. Pure Appl. Math., 16:4 (1963), 477–486 | DOI | MR | Zbl

[4] Laks P., Fillips R., Teoriya rasseyaniya, Mir, M., 1971 | MR

[5] Mikhailov V. P., “O kornyakh funktsii Makdonalda”, Tr. MIAN, 103, Nauka, M., 1968, 162–171 | MR

[6] Ivrii V. Ya., “Eksponentsialnoe ubyvanie reshenii volnovogo uravneniya vo vneshnosti pochti zvezdnoi oblasti”, Dokl. AN SSSR, 189:5 (1969), 938–940 | MR | Zbl

[7] Morawetz C. S., “Decay for solutions of the exterior problem for the wave equation”, Comm. Pure Appl. Math., 28:2 (1975), 229–264 | DOI | MR | Zbl

[8] Morawetz C. S., Ralston J. V., Strauss W. A., “Decay of solutions of the wave equation outside nontrapping obstacles”, Comm. Pure Appl. Math., 30:4 (1977), 447–508 | DOI | MR | Zbl

[9] Muravei L. A., “Ob asimptoticheskom povedenii pri bolshikh znacheniyakh vremeni reshenii vneshnikh kraevykh zadach dlya volnovogo uravneniya s dvumya prostranstvennymi peremennymi”, Matem. sb., 107 (149):1 (9) (1978), 84–133 | MR | Zbl

[10] Zachmanoglou E. C., “The decay of solutions of the initial boundary-value problem for the wave equation in unbounded regions”, Arch. Rational Mech. Anal., 14:4 (1963), 312–325 | MR | Zbl

[11] Muravei L. A., “Volnovoe uravnenie i uravnenie Gelmgoltsa v neogranichennoi oblasti so zvezdnoi granitsei”, Tr. MIAN, 185, Nauka, M., 1988, 171–180 | MR

[12] Zachmanoglou E. C., “An example of slow decay of the solution of the initial-boundary value problem for the wave equation in unbounded regions”, Bull. Amer. Math. Soc., 70:4 (1964), 633–636 | DOI | MR | Zbl

[13] Filinovskii A. V., “Stabilizatsiya reshenii volnovogo uravneniya v neogranichennykh oblastyakh”, Matem. sb., 187:6 (1996), 131–160 | MR | Zbl

[14] Buslaev V. S., “Korotkovolnovaya asimptotika v zadache difraktsii na gladkikh vypuklykh konturakh”, Tr. MIAN, 73, Nauka, M., 1964, 14–117 | MR

[15] Muravei L. A., “Analiticheskoe prodolzhenie po parametru funktsii Grina vneshnikh kraevykh zadach dlya dvumernogo uravneniya Gelmgoltsa, III”, Matem. sb., 105 (147):1 (1978), 63–108 | MR | Zbl

[16] Morawetz C. S., Ludwig D., “An inequality for the reduced wave operator and the justification of geometrical optics”, Comm. Pure Appl. Math., 21:2 (1968), 187–203 | DOI | MR | Zbl

[17] Babich V. M., “O korotkovolnovoi asimptotike funktsii Grina dlya uravneniya Gelmgoltsa”, Matem. sb., 65:4 (1964), 576–630 | MR | Zbl

[18] Mikhailov V. P., “O printsipe predelnoi amplitudy”, Dokl. AN SSSR, 159:4 (1964), 750–752 | MR

[19] Babich V. M., Grigoreva N. S., “Ob analiticheskom prodolzhenii rezolventy vneshnikh trekhmernykh zadach dlya operatora Laplasa na vtoroi list”, Funkts. analiz i ego prilozh., 8:1 (1974), 71–72 | MR | Zbl

[20] Vainberg B. R., “Asimptoticheskoe povedenie pri $t\to\infty$ reshenii vneshnikh smeshannykh zadach dlya giperbolicheskikh uravnenii i kvaziklassika”, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 34, VINITI, M., 1987, 57–92

[21] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[22] Vinnik A. A., “Ob usloviyakh izlucheniya dlya oblastei s beskonechnymi granitsami”, Izv. vuzov. Ser. matem., 1977, no. 7(182), 37–45 | MR | Zbl

[23] Vinnik A. A., Eidus D. M., “Printsip predelnoi amplitudy dlya oblastei tipa paraboloida”, Izv. vuzov. Ser. matem., 1979, no. 3(202), 28–37 | MR | Zbl