Stabilization of the~solutions of the~wave equation in domains with non-compact boundaries
Sbornik. Mathematics, Tome 189 (1998) no. 8, pp. 1251-1272

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic behaviour (for large values of time) of the solutions of the first mixed boundary-value problem for the wave equation in domains with non-compact, non-star-shaped boundaries is considered. Estimates with respect to the spectral parameter of the solutions of the first boundary-value problem for the Helmholtz equation are obtained.
@article{SM_1998_189_8_a6,
     author = {A. V. Filinovskii},
     title = {Stabilization of the~solutions of the~wave equation in domains with non-compact boundaries},
     journal = {Sbornik. Mathematics},
     pages = {1251--1272},
     publisher = {mathdoc},
     volume = {189},
     number = {8},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_8_a6/}
}
TY  - JOUR
AU  - A. V. Filinovskii
TI  - Stabilization of the~solutions of the~wave equation in domains with non-compact boundaries
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1251
EP  - 1272
VL  - 189
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_8_a6/
LA  - en
ID  - SM_1998_189_8_a6
ER  - 
%0 Journal Article
%A A. V. Filinovskii
%T Stabilization of the~solutions of the~wave equation in domains with non-compact boundaries
%J Sbornik. Mathematics
%D 1998
%P 1251-1272
%V 189
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_8_a6/
%G en
%F SM_1998_189_8_a6
A. V. Filinovskii. Stabilization of the~solutions of the~wave equation in domains with non-compact boundaries. Sbornik. Mathematics, Tome 189 (1998) no. 8, pp. 1251-1272. http://geodesic.mathdoc.fr/item/SM_1998_189_8_a6/