Stabilization of the~solutions of the~wave equation in domains with non-compact boundaries
Sbornik. Mathematics, Tome 189 (1998) no. 8, pp. 1251-1272
Voir la notice de l'article provenant de la source Math-Net.Ru
The asymptotic behaviour (for large values of time) of the solutions of the first mixed boundary-value problem for the wave equation in domains with non-compact, non-star-shaped boundaries is considered. Estimates with respect to the spectral parameter of the solutions of the first boundary-value problem for the Helmholtz equation are obtained.
@article{SM_1998_189_8_a6,
author = {A. V. Filinovskii},
title = {Stabilization of the~solutions of the~wave equation in domains with non-compact boundaries},
journal = {Sbornik. Mathematics},
pages = {1251--1272},
publisher = {mathdoc},
volume = {189},
number = {8},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_8_a6/}
}
TY - JOUR AU - A. V. Filinovskii TI - Stabilization of the~solutions of the~wave equation in domains with non-compact boundaries JO - Sbornik. Mathematics PY - 1998 SP - 1251 EP - 1272 VL - 189 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1998_189_8_a6/ LA - en ID - SM_1998_189_8_a6 ER -
A. V. Filinovskii. Stabilization of the~solutions of the~wave equation in domains with non-compact boundaries. Sbornik. Mathematics, Tome 189 (1998) no. 8, pp. 1251-1272. http://geodesic.mathdoc.fr/item/SM_1998_189_8_a6/