Lipschitz continuations of linearly bounded functions
Sbornik. Mathematics, Tome 189 (1998) no. 8, pp. 1179-1203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the continuation of a real-valued function from a subset $Y$ of a metric space $(X,d)$ to the whole of the space is considered. A well-known result of McShane enables one to extend a uniformly continuous function preserving its modulus of continuity. However, some natural questions remain unanswered in the process. A new scheme for the extension of a broad class of functions, including bounded and Lipschitz functions, is proposed. Several properties of these extensions, useful in applications, are proved. They include the preservation of constraints on the increments of a function defined in terms of quasiconcave majorants. This result enables one to refine and generalize well-known results on the problem of the traces of functions with bounded gradient. The extension in question is used in two problems on function approximation. In particular, a direct proof of the density of the class $\operatorname {Lip}(X)$ in $\operatorname {lip}(X,\omega )$ is given.
@article{SM_1998_189_8_a4,
     author = {V. A. Milman},
     title = {Lipschitz continuations of linearly bounded functions},
     journal = {Sbornik. Mathematics},
     pages = {1179--1203},
     year = {1998},
     volume = {189},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_8_a4/}
}
TY  - JOUR
AU  - V. A. Milman
TI  - Lipschitz continuations of linearly bounded functions
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1179
EP  - 1203
VL  - 189
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_8_a4/
LA  - en
ID  - SM_1998_189_8_a4
ER  - 
%0 Journal Article
%A V. A. Milman
%T Lipschitz continuations of linearly bounded functions
%J Sbornik. Mathematics
%D 1998
%P 1179-1203
%V 189
%N 8
%U http://geodesic.mathdoc.fr/item/SM_1998_189_8_a4/
%G en
%F SM_1998_189_8_a4
V. A. Milman. Lipschitz continuations of linearly bounded functions. Sbornik. Mathematics, Tome 189 (1998) no. 8, pp. 1179-1203. http://geodesic.mathdoc.fr/item/SM_1998_189_8_a4/

[1] Wells J. H., Williams L. R., Embeddings and Extensions in Analysis, Springer-Verlag, Berlin, 1975 | MR | Zbl

[2] McShane E., “Extension of range of function”, Bull. Amer. Math. Soc., 40:12 (1934), 837–842 | DOI | MR | Zbl

[3] Czipcer J., Geher L., “Extension of functions satisfying a Lipschitz condition”, Acta Math. Hungar., 6:1–2 (1955), 213–220 | MR

[4] Kalyabin G. A., “O sledakh funktsii s mazhoriruemymi proizvodnymi”, Matem. zametki, 18:4 (1975), 499–506 | MR | Zbl

[5] Vladimirov Yu. N., “O maksimalnykh funktsiyakh Lipshitsa, svyazannykh s zadachei optimalnogo peremescheniya massy”, Optimizatsiya, 1988, no. 44, 96–113 | MR | Zbl

[6] Sherbert D., “The structure of ideals and point derivations in Banach algebras of Lipschitz functions”, Trans. Amer. Math. Soc., 111:2 (1964), 240–272 | DOI | MR | Zbl

[7] Klyachin A. A., Miklyukov V. M., “Sledy funktsii s prostranstvennopodobnymi grafikami i zadacha o prodolzhenii funktsii pri ogranicheniyakh na gradient”, Matem. sb., 183:7 (1992), 49–64 | MR

[8] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[9] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[10] Hiriart-Urruty J.-B., “Extension of Lipschitz functions”, J. Math. Anal. Appl., 77:2 (1980), 539–555 | DOI | MR

[11] Hanin L. G., “Kantorovich–Rubinshtein norm and its application in the theory of Lipschitz spaces”, Proc. Amer. Math. Soc., 115:2 (1992), 345–352 | DOI | MR | Zbl

[12] Mustata C., Extension of Hölder functions and some related problems of best approximation, Res. Semin. Preprint No 7, “Babes-Bolyai” Univ., Fac. Math. Phys., 1991, p. 71–86 | MR | Zbl

[13] Mabizela S., “The relationship between Lipschits extensions, best approximations, and continuous selections”, Quaestiones Math., 14:3 (1991), 261–268 | MR | Zbl

[14] Moreau P., Ronse C., “Generation of shading-off in images by extrapolation of Lipschitz functions”, Graphical Models and Image Processing, 58:4 (1996), 314–333 | DOI | MR

[15] Le Gruyer E., Archer J. C., “Stability and convergence of extension schemes to continuous functions in general metric spaces”, SIAM J. Math. Anal., 27:1 (1996), 274–285 | DOI | MR | Zbl

[16] Milman V. A., “Prodolzhenie funktsii s sokhraneniem modulya nepreryvnosti”, Vestsi AH Belarusi. Ser. fiz.-mat. navuk, 1996, no. 4, 23–28 | MR | Zbl

[17] Milman V. A., “Prodolzhenie funktsii, sokhranyayuschee modul nepreryvnosti”, Matem. zametki, 61:2 (1997), 236–245 | MR | Zbl

[18] Burbaki N., Funktsii deistvitelnogo peremennogo, Nauka, M., 1965 | MR

[19] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[20] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[21] Bartnik R., Simon L., “Spacelike hypersurfaces with prescribed boundary values and mean curvature”, Comm. Math. Phys., 87:1 (1982), 131–152 | DOI | MR | Zbl

[22] Sleźak B., “A mean value theorem in metric spaces”, Constructive Theory of Functions, Publ. House Bulgarian Acad. Sci., Sofia, 1988, 47–49 | MR

[23] Klyachin A. A., “Razreshimost zadachi Dirikhle dlya uravneniya maksimalnykh poverkhnostei s osobennostyami v neogranichennykh oblastyakh”, Dokl. AN, 342:2 (1995), 162–164 | MR | Zbl

[24] Bade W. G., Curtis P. C., Dales H. G., “Amenability and weak amenability for Beurling and Lipschitz algebras”, Proc. London Math. Soc. (3), 55:2 (1987), 359–377 | MR | Zbl