Weighted Sobolev spaces
Sbornik. Mathematics, Tome 189 (1998) no. 8, pp. 1139-1170 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The case when smooth functions are not dense in a weighted Sobolev space $W$ is considered. New examples of the inequality $H\ne W$ (where $H$ is the closure of the space of smooth functions) are presented. We pose the problem of 'viscosity' or 'attainable' spaces $V$ (that is, spaces that are in a certain sense limits of weighted Sobolev spaces corresponding to 'well-behaved' weights, which means weights bounded above and away from zero) such that $H\subseteq V\subseteq W$. A precise definition of this property of 'attainability' is given in terms of the convergence of the solutions of the corresponding elliptic equations. It is proved that an attainable space always exists, but does not in general coincide with the extreme spaces $H$ and $W$. Examples of strict inclusions $H\subset V\subset W$ are presented.
@article{SM_1998_189_8_a2,
     author = {V. V. Zhikov},
     title = {Weighted {Sobolev} spaces},
     journal = {Sbornik. Mathematics},
     pages = {1139--1170},
     year = {1998},
     volume = {189},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_8_a2/}
}
TY  - JOUR
AU  - V. V. Zhikov
TI  - Weighted Sobolev spaces
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1139
EP  - 1170
VL  - 189
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_8_a2/
LA  - en
ID  - SM_1998_189_8_a2
ER  - 
%0 Journal Article
%A V. V. Zhikov
%T Weighted Sobolev spaces
%J Sbornik. Mathematics
%D 1998
%P 1139-1170
%V 189
%N 8
%U http://geodesic.mathdoc.fr/item/SM_1998_189_8_a2/
%G en
%F SM_1998_189_8_a2
V. V. Zhikov. Weighted Sobolev spaces. Sbornik. Mathematics, Tome 189 (1998) no. 8, pp. 1139-1170. http://geodesic.mathdoc.fr/item/SM_1998_189_8_a2/

[1] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950

[2] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya i teoremy vlozheniya, Nauka, M., 1975 | Zbl

[3] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[4] Meyers N., Serrin J., “$H=W$”, Proc. Nat. Acad. Sci. U.S.A., 51 (1964), 362–379 | MR

[5] Zhikov V. V., “On Lavrentiev's Phenomenon”, Russian J. Math. Phys., 3:2 (1994), 249–269 | MR

[6] Zhikov V. V., “Ob effekte Lavrenteva”, Dokl. AN, 345:1 (1995), 10–14 | MR | Zbl

[7] Piat V. Chiado, Cassano F. Serra, “Some remarks about the Density of Smooth Functions in Weighted Sobolev Spaces”, J. Convex Anal., 1:2 (1994), 135–142 | MR | Zbl

[8] Fabes E. B., Kenig C. E., Serapioni R. P., “The local regularity of solutions of degenerate elliptic equations”, Comm. Partial Diffirental Equations, 7 (1982), 77–116 | DOI | MR | Zbl

[9] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Matem. sb., 187:8 (1996), 3–40 | MR | Zbl

[10] Kudryavtsev L. D., “O postroenii posledovatelnosti finitnykh funktsii, approksimiruyuschikh funktsii vesovykh klassov”, Tr. MIAN, 156, Nauka, M., 1980, 121–129 | MR | Zbl

[11] Besov O. V., “O plotnosti finitnykh funktsii v vesovom prostranstve S. L. Soboleva”, Tr. MIAN, 161, Nauka, M., 1983, 29–47 | MR | Zbl

[12] Kufner A., Weighted Sobolev Spaces, Teubner-Texte Math., 31, Leipzig, 1980 | MR | Zbl

[13] Muckenhoupt B., “Weighted norm inequalities for Hardy maximal function”, Trans. Amer. Math. Soc., 165 (1972), 207–226 | DOI | MR | Zbl

[14] Coifman R. R., Fefferman C., “Weighted norm inequalities for maximal functions and singular integral”, Studia Math., 51 (1974), 241–250 | MR | Zbl

[15] Piat V. Chiado, Cassano F. Serra, “Relaxation of degenerate variational integrals”, Nonlinear Anal., 22 (1994), 409–424 | DOI | MR | Zbl

[16] Cassano F. Serra, “On the Local Boundedness of Certain Solutions for a Class of Degenerate Elliptic Equations”, Boll. Un. Mat. Ital. B (7), 10 (1996), 651–680 | MR