Decomposing one-relator products of cyclic groups into free products with amalgamation
Sbornik. Mathematics, Tome 189 (1998) no. 8, pp. 1125-1137

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the decomposition of one-relator products of cyclics into non-trivial free products with amalgamation is considered. Two theorems are proved, one of which is as follows. \textit{ Let $G=\langle a,b\mid a^{2n}=R^m(a,b)=1\rangle $, where $n\geqslant 0$, $m\geqslant 2$, and $R(a,b)$ is a cyclically reduced word containing $b$ in the free group on $a$ and $b$. Then $G$ is a non-trivial free product with amalgamation.} One consequence of this theorem is a proof of the conjecture of Fine, Levin, and Rosenberger that each two-generator one-relator group with torsion is a non-trivial free product with amalgamation.
@article{SM_1998_189_8_a1,
     author = {V. V. Benyash-Krivets},
     title = {Decomposing one-relator products of cyclic groups into free products with amalgamation},
     journal = {Sbornik. Mathematics},
     pages = {1125--1137},
     publisher = {mathdoc},
     volume = {189},
     number = {8},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_8_a1/}
}
TY  - JOUR
AU  - V. V. Benyash-Krivets
TI  - Decomposing one-relator products of cyclic groups into free products with amalgamation
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1125
EP  - 1137
VL  - 189
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_8_a1/
LA  - en
ID  - SM_1998_189_8_a1
ER  - 
%0 Journal Article
%A V. V. Benyash-Krivets
%T Decomposing one-relator products of cyclic groups into free products with amalgamation
%J Sbornik. Mathematics
%D 1998
%P 1125-1137
%V 189
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_8_a1/
%G en
%F SM_1998_189_8_a1
V. V. Benyash-Krivets. Decomposing one-relator products of cyclic groups into free products with amalgamation. Sbornik. Mathematics, Tome 189 (1998) no. 8, pp. 1125-1137. http://geodesic.mathdoc.fr/item/SM_1998_189_8_a1/