Decomposing one-relator products of cyclic groups into free products with amalgamation
Sbornik. Mathematics, Tome 189 (1998) no. 8, pp. 1125-1137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the decomposition of one-relator products of cyclics into non-trivial free products with amalgamation is considered. Two theorems are proved, one of which is as follows. \textit{ Let $G=\langle a,b\mid a^{2n}=R^m(a,b)=1\rangle $, where $n\geqslant 0$, $m\geqslant 2$, and $R(a,b)$ is a cyclically reduced word containing $b$ in the free group on $a$ and $b$. Then $G$ is a non-trivial free product with amalgamation.} One consequence of this theorem is a proof of the conjecture of Fine, Levin, and Rosenberger that each two-generator one-relator group with torsion is a non-trivial free product with amalgamation.
@article{SM_1998_189_8_a1,
     author = {V. V. Benyash-Krivets},
     title = {Decomposing one-relator products of cyclic groups into free products with amalgamation},
     journal = {Sbornik. Mathematics},
     pages = {1125--1137},
     year = {1998},
     volume = {189},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_8_a1/}
}
TY  - JOUR
AU  - V. V. Benyash-Krivets
TI  - Decomposing one-relator products of cyclic groups into free products with amalgamation
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1125
EP  - 1137
VL  - 189
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_8_a1/
LA  - en
ID  - SM_1998_189_8_a1
ER  - 
%0 Journal Article
%A V. V. Benyash-Krivets
%T Decomposing one-relator products of cyclic groups into free products with amalgamation
%J Sbornik. Mathematics
%D 1998
%P 1125-1137
%V 189
%N 8
%U http://geodesic.mathdoc.fr/item/SM_1998_189_8_a1/
%G en
%F SM_1998_189_8_a1
V. V. Benyash-Krivets. Decomposing one-relator products of cyclic groups into free products with amalgamation. Sbornik. Mathematics, Tome 189 (1998) no. 8, pp. 1125-1137. http://geodesic.mathdoc.fr/item/SM_1998_189_8_a1/

[1] Howie J., “One relator products of groups”, Proceedings of groups St. Andrews, Cambridge Univ. Press, Cambridge, 1985, 216–220 | MR

[2] Fine B., Levin F., Rosenberger G., “Free subgroups and decompositions of one-relator products of cyclics. 2: Normal torsion free subgroups and FPA decompositiomns”, J. Indian Math. Soc., 49 (1985), 237–247 | MR

[3] Zieschang H., “On decompositions of discontinuous groups of the plane”, Math. Z., 151 (1976), 165–188 | DOI | MR | Zbl

[4] Rosenberger G., “Bemerkungen zu einer Arbeit von H. Zieschang”, Arch. Math. (Basel), 29 (1977), 623–627 | MR | Zbl

[5] Long D. D., Maclachlan C., Reid A. W., “Splitting groups of signature $(1,n)$”, J. Algebra, 185 (1996), 329–341 | DOI | MR | Zbl

[6] Dunwoody M. J., Sageev M., “Splittings of certain Fuchsian groups”, Proc. Amer. Math. Soc., 125:7 (1997), 1953–1954 | DOI | MR | Zbl

[7] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR | Zbl

[8] Bass H., “Finitely generated subgroups of $\operatorname{GL}_2(\mathbb C)_2(\mathbb C)$”, The Smith Conjecture, Wiley, New York, 1984, 127–136 | MR

[9] Horowitz R., “Characters of free groups represented in the two dimensional linear group”, Comm. Pure. Appl. Math., 25 (1972), 635–649 | DOI | MR

[10] Magnus W., “The uses of $2$ by $2$ matrices in combinatorial group theory”, Results Math., 4:2 (1981), 171–192 | MR | Zbl

[11] Culler M., Shalen P., “Varieties of group representations and splittings of $3$ manifolds”, Ann. of Math. (2), 117 (1983), 109–147 | DOI | MR

[12] Helling H., “Diskrete Untergruppen von $\operatorname{SL}_2(\mathbb R)$”, Invent. Math., 17 (1972), 217–229 | DOI | MR | Zbl

[13] Traina C., “Trace polynomial for two generated subgroups of $\operatorname{SL}_2(\mathbb C)$”, Proc. Amer. Math. Soc., 79 (1980), 369–372 | DOI | MR