A basis of identities of a variety generated by a finitely-based quasi-variety of groups
Sbornik. Mathematics, Tome 189 (1998) no. 8, pp. 1115-1124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Examples are constructed of soluble finitely-based quasi-varieties of groups that generate non-finitely based varieties (with degree of solubility at most 7).
@article{SM_1998_189_8_a0,
     author = {M. I. Anokhin},
     title = {A basis of identities of a~variety generated by a~finitely-based quasi-variety of groups},
     journal = {Sbornik. Mathematics},
     pages = {1115--1124},
     year = {1998},
     volume = {189},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_8_a0/}
}
TY  - JOUR
AU  - M. I. Anokhin
TI  - A basis of identities of a variety generated by a finitely-based quasi-variety of groups
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1115
EP  - 1124
VL  - 189
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_8_a0/
LA  - en
ID  - SM_1998_189_8_a0
ER  - 
%0 Journal Article
%A M. I. Anokhin
%T A basis of identities of a variety generated by a finitely-based quasi-variety of groups
%J Sbornik. Mathematics
%D 1998
%P 1115-1124
%V 189
%N 8
%U http://geodesic.mathdoc.fr/item/SM_1998_189_8_a0/
%G en
%F SM_1998_189_8_a0
M. I. Anokhin. A basis of identities of a variety generated by a finitely-based quasi-variety of groups. Sbornik. Mathematics, Tome 189 (1998) no. 8, pp. 1115-1124. http://geodesic.mathdoc.fr/item/SM_1998_189_8_a0/

[1] Mazurov V. D., Khukhro E. I., Nereshennye voprosy teorii grupp. Kourovskaya tetrad, Izd-vo NII matematiko-informatsionnykh osnov obucheniya NGU, Novosibirsk, 1995

[2] Kleiman Yu. G., “O nekotorykh voprosakh teorii mnogoobrazii grupp”, Izv. AN SSSR. Ser. matem., 47:1 (1983), 37–74 | MR | Zbl

[3] Vaughan-Lee M. R., “Uncountably many varieties of groups”, Bull. London Math. Soc. Pt. 3, 2:6 (1970), 280–286 | DOI | MR | Zbl

[4] Kleiman Yu. G., “O tozhdestvakh v gruppakh”, Tr. MMO, 44, URSS, M., 1982, 62–108 | MR | Zbl

[5] Neiman Kh., Mnogoobraziya grupp, Mir, M., 1969 | MR

[6] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR | Zbl