A basis of identities of a variety generated by a finitely-based quasi-variety of groups
Sbornik. Mathematics, Tome 189 (1998) no. 8, pp. 1115-1124
Cet article a éte moissonné depuis la source Math-Net.Ru
Examples are constructed of soluble finitely-based quasi-varieties of groups that generate non-finitely based varieties (with degree of solubility at most 7).
@article{SM_1998_189_8_a0,
author = {M. I. Anokhin},
title = {A basis of identities of a~variety generated by a~finitely-based quasi-variety of groups},
journal = {Sbornik. Mathematics},
pages = {1115--1124},
year = {1998},
volume = {189},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_8_a0/}
}
M. I. Anokhin. A basis of identities of a variety generated by a finitely-based quasi-variety of groups. Sbornik. Mathematics, Tome 189 (1998) no. 8, pp. 1115-1124. http://geodesic.mathdoc.fr/item/SM_1998_189_8_a0/
[1] Mazurov V. D., Khukhro E. I., Nereshennye voprosy teorii grupp. Kourovskaya tetrad, Izd-vo NII matematiko-informatsionnykh osnov obucheniya NGU, Novosibirsk, 1995
[2] Kleiman Yu. G., “O nekotorykh voprosakh teorii mnogoobrazii grupp”, Izv. AN SSSR. Ser. matem., 47:1 (1983), 37–74 | MR | Zbl
[3] Vaughan-Lee M. R., “Uncountably many varieties of groups”, Bull. London Math. Soc. Pt. 3, 2:6 (1970), 280–286 | DOI | MR | Zbl
[4] Kleiman Yu. G., “O tozhdestvakh v gruppakh”, Tr. MMO, 44, URSS, M., 1982, 62–108 | MR | Zbl
[5] Neiman Kh., Mnogoobraziya grupp, Mir, M., 1969 | MR
[6] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR | Zbl