Spherical convergence of the Fourier integral of the indicator function of an $N$-dimensional domain
Sbornik. Mathematics, Tome 189 (1998) no. 7, pp. 1101-1113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Convergence of the spherical means $f_\Omega (a)$ (here $f$ is the characteristic function of a compact subdomain $\mathscr D^N\in \mathbb R^N$ and $\Omega$ is the radius of a ball in the frequency range) at a point $a\in \mathbb R^N$, $a\notin \partial \mathscr D^N$ (where $\partial \mathscr D$ is the boundary of $\mathscr D^N$), can be characterized by the convergence exponent $\sigma (a\,|\,\partial \mathscr D^N)$. In the case when $|f_\Omega (a)-f(a)|\leqslant O(\Omega ^{-\gamma +\varepsilon })$ for $\gamma >0$ and each $\varepsilon>0$ as $\Omega \to \infty$, $\sigma (a\,|\,\partial \mathscr D^N)$ is the least upper bound of $\gamma$. The question of the dependence of the quantity $\sigma (a\,|\,\partial \mathscr D^N)$ on the position of the point $a\notin \partial \mathscr D^N$ and the geometry of the hypersurface $\partial \mathscr D^N$ is studied. If $\partial \mathscr D^N$ is smooth and $a\notin \mathscr K(\partial \mathscr D^N)$ (here $\mathscr K(\partial \mathscr D^N)$ is the focal surface of $\partial \mathscr D^N$), then it is shown that $\sigma (a\,|\,\partial \mathscr D^N)=1$ irrespective of $N$. A complete description of $\sigma (a\,|\,\partial \mathscr D^N)$ for domains $\mathscr D^N$ with boundary in general position and $N\leqslant 10$ is given on the basis of the theory of singularities. The question of the dimension of the divergence region $\mathscr R(\partial \mathscr D^N)\in \mathscr K(\partial \mathscr D^N)$ (where the spherical means diverge as $\Omega \to \infty$) is considered. It is shown that $\dim \mathscr R(\partial \mathscr D^N)\leqslant N-3$ for $N\geqslant 3$, while for $N\geqslant 21$ there exist hypersurfaces $\partial \mathscr D^N$ in general position such that $\dim \mathscr R(\partial \mathscr D^N)\geqslant N-21$.
@article{SM_1998_189_7_a6,
     author = {D. A. Popov},
     title = {Spherical convergence of {the~Fourier} integral of the~indicator function of an~$N$-dimensional domain},
     journal = {Sbornik. Mathematics},
     pages = {1101--1113},
     year = {1998},
     volume = {189},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_7_a6/}
}
TY  - JOUR
AU  - D. A. Popov
TI  - Spherical convergence of the Fourier integral of the indicator function of an $N$-dimensional domain
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1101
EP  - 1113
VL  - 189
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_7_a6/
LA  - en
ID  - SM_1998_189_7_a6
ER  - 
%0 Journal Article
%A D. A. Popov
%T Spherical convergence of the Fourier integral of the indicator function of an $N$-dimensional domain
%J Sbornik. Mathematics
%D 1998
%P 1101-1113
%V 189
%N 7
%U http://geodesic.mathdoc.fr/item/SM_1998_189_7_a6/
%G en
%F SM_1998_189_7_a6
D. A. Popov. Spherical convergence of the Fourier integral of the indicator function of an $N$-dimensional domain. Sbornik. Mathematics, Tome 189 (1998) no. 7, pp. 1101-1113. http://geodesic.mathdoc.fr/item/SM_1998_189_7_a6/

[1] Alimov Sh. A., Ashurov R. R., Pulatov A. K., “Kratnye ryady i integraly Fure”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 42, VINITI, M., 1989, 7–104 | MR

[2] Pinsky M. A., Stanton N. K., Trapa P. F., “Forier Series of Radial Function in Several Variables”, J. Funct. Anal., 116:1 (1993), 111–132 | DOI | MR | Zbl

[3] Pinsky M. A., “Pointwise Fourier Inversion in Several Variables”, Notices Amer. Math. Soc., 42:3 (1995), 330–334 | MR | Zbl

[4] Golubov B. I., “O summiruemosti integrala Fure sfericheskimi srednimi Rissa”, Matem. sb., 104:4 (1977), 577–596 | MR | Zbl

[5] Dyachenko M. I., “Sfericheskie chastichnye summy dvoinykh ryadov Fure funktsii s ogranichennoi obobschennoi variatsiei”, Matem. sb., 188:1 (1997), 29–58 | MR | Zbl

[6] Popov D. A., “Otsenki s konstantami dlya nekotorykh klassov ostsilliruyuschikh integralov”, UMN, 52:1 (1997), 77–148 | MR | Zbl

[7] Popov D. A., “Sfericheskaya skhodimost ryada i integrala Fure indikatora dvumernoi oblasti”, Tr. MIAN, 218, Nauka, M., 1997, 354–373 | MR | Zbl

[8] Maslov V. P., “Svoistva absolyutnoi skhodimosti mnogomernykh ryadov Fure s tochki zreniya geometrii slabykh razryvov razlagaemykh funktsii”, DAN SSSR, 191:2 (1970), 275–278 | MR | Zbl

[9] Stein I., Veis G., Vvedenie v garmonicheskii analiz v evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[10] Vatson G. N., Teoriya besselevykh funktsii, T. 1, IL, M., 1949

[11] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. 3, Fizmatgiz, M., 1960

[12] Mischenko A. S., Fomenko A. T., Kurs differentsialnoi geometrii i topologii, MGU, M., 1980

[13] Vekua I. N., Osnovy tenzornogo analiza i teorii kovariantov, Nauka, M., 1978 | MR

[14] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR

[15] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, T. 1, Mir, M., 1986

[16] Arnold V. I., “Zamechaniya o metode statsionarnoi fazy i chislakh Kokstera”, UMN, 28:5 (1973), 17–44 | MR | Zbl

[17] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. T. 1. Monodromiya i asimptotika integralov, Nauka, M., 1984 | MR

[18] Arnold V. I., “Teoriya katastrof”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 5, VINITI, M., 1985, 219–277

[19] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. T. 2. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR

[20] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR | Zbl

[21] Karpushkin V. N., “Ravnomernye otsenki ostsilliruyuschikh integralov s parabolicheskoi ili giperbolicheskoi fazoi”, Tr. sem. im. I. G. Petrovskogo, 19, Izd-vo Mosk. un-ta, M., 1983, 3–39 | MR | Zbl