Spherical convergence of the~Fourier integral of the~indicator function of an~$N$-dimensional domain
Sbornik. Mathematics, Tome 189 (1998) no. 7, pp. 1101-1113

Voir la notice de l'article provenant de la source Math-Net.Ru

Convergence of the spherical means $f_\Omega (a)$ (here $f$ is the characteristic function of a compact subdomain $\mathscr D^N\in \mathbb R^N$ and $\Omega$ is the radius of a ball in the frequency range) at a point $a\in \mathbb R^N$, $a\notin \partial \mathscr D^N$ (where $\partial \mathscr D$ is the boundary of $\mathscr D^N$), can be characterized by the convergence exponent $\sigma (a\,|\,\partial \mathscr D^N)$. In the case when $|f_\Omega (a)-f(a)|\leqslant O(\Omega ^{-\gamma +\varepsilon })$ for $\gamma >0$ and each $\varepsilon>0$ as $\Omega \to \infty$, $\sigma (a\,|\,\partial \mathscr D^N)$ is the least upper bound of $\gamma$. The question of the dependence of the quantity $\sigma (a\,|\,\partial \mathscr D^N)$ on the position of the point $a\notin \partial \mathscr D^N$ and the geometry of the hypersurface $\partial \mathscr D^N$ is studied. If $\partial \mathscr D^N$ is smooth and $a\notin \mathscr K(\partial \mathscr D^N)$ (here $\mathscr K(\partial \mathscr D^N)$ is the focal surface of $\partial \mathscr D^N$), then it is shown that $\sigma (a\,|\,\partial \mathscr D^N)=1$ irrespective of $N$. A complete description of $\sigma (a\,|\,\partial \mathscr D^N)$ for domains $\mathscr D^N$ with boundary in general position and $N\leqslant 10$ is given on the basis of the theory of singularities. The question of the dimension of the divergence region $\mathscr R(\partial \mathscr D^N)\in \mathscr K(\partial \mathscr D^N)$ (where the spherical means diverge as $\Omega \to \infty$) is considered. It is shown that $\dim \mathscr R(\partial \mathscr D^N)\leqslant N-3$ for $N\geqslant 3$, while for $N\geqslant 21$ there exist hypersurfaces $\partial \mathscr D^N$ in general position such that $\dim \mathscr R(\partial \mathscr D^N)\geqslant N-21$.
@article{SM_1998_189_7_a6,
     author = {D. A. Popov},
     title = {Spherical convergence of {the~Fourier} integral of the~indicator function of an~$N$-dimensional domain},
     journal = {Sbornik. Mathematics},
     pages = {1101--1113},
     publisher = {mathdoc},
     volume = {189},
     number = {7},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_7_a6/}
}
TY  - JOUR
AU  - D. A. Popov
TI  - Spherical convergence of the~Fourier integral of the~indicator function of an~$N$-dimensional domain
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1101
EP  - 1113
VL  - 189
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_7_a6/
LA  - en
ID  - SM_1998_189_7_a6
ER  - 
%0 Journal Article
%A D. A. Popov
%T Spherical convergence of the~Fourier integral of the~indicator function of an~$N$-dimensional domain
%J Sbornik. Mathematics
%D 1998
%P 1101-1113
%V 189
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_7_a6/
%G en
%F SM_1998_189_7_a6
D. A. Popov. Spherical convergence of the~Fourier integral of the~indicator function of an~$N$-dimensional domain. Sbornik. Mathematics, Tome 189 (1998) no. 7, pp. 1101-1113. http://geodesic.mathdoc.fr/item/SM_1998_189_7_a6/