A Wiener-type Tauberian theorem for generalized functions of slow growth
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 189 (1998) no. 7, pp. 1047-1086
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper is devoted to the extension of Wiener-type Tauberian theorems to the case of generalized functions of slow growth. A functional is shown to have asymptotics (in the weak sense) if and only if it has asymptotics on a 'test' function whose Mellin transform is bounded away from zero in a certain strip of the complex plane related to the order of the functional in question. Applications of this result are also considered; in particular, several theorems on the lack of compensation of the singularities of holomorphic functions are proved.
			
            
            
            
          
        
      @article{SM_1998_189_7_a4,
     author = {Yu. N. Drozhzhinov and B. I. Zavialov},
     title = {A {Wiener-type} {Tauberian} theorem for generalized functions of slow growth},
     journal = {Sbornik. Mathematics},
     pages = {1047--1086},
     publisher = {mathdoc},
     volume = {189},
     number = {7},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_7_a4/}
}
                      
                      
                    TY - JOUR AU - Yu. N. Drozhzhinov AU - B. I. Zavialov TI - A Wiener-type Tauberian theorem for generalized functions of slow growth JO - Sbornik. Mathematics PY - 1998 SP - 1047 EP - 1086 VL - 189 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1998_189_7_a4/ LA - en ID - SM_1998_189_7_a4 ER -
Yu. N. Drozhzhinov; B. I. Zavialov. A Wiener-type Tauberian theorem for generalized functions of slow growth. Sbornik. Mathematics, Tome 189 (1998) no. 7, pp. 1047-1086. http://geodesic.mathdoc.fr/item/SM_1998_189_7_a4/
