A Wiener-type Tauberian theorem for generalized functions of slow growth
Sbornik. Mathematics, Tome 189 (1998) no. 7, pp. 1047-1086 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the extension of Wiener-type Tauberian theorems to the case of generalized functions of slow growth. A functional is shown to have asymptotics (in the weak sense) if and only if it has asymptotics on a 'test' function whose Mellin transform is bounded away from zero in a certain strip of the complex plane related to the order of the functional in question. Applications of this result are also considered; in particular, several theorems on the lack of compensation of the singularities of holomorphic functions are proved.
@article{SM_1998_189_7_a4,
     author = {Yu. N. Drozhzhinov and B. I. Zavialov},
     title = {A {Wiener-type} {Tauberian} theorem for generalized functions of slow growth},
     journal = {Sbornik. Mathematics},
     pages = {1047--1086},
     year = {1998},
     volume = {189},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_7_a4/}
}
TY  - JOUR
AU  - Yu. N. Drozhzhinov
AU  - B. I. Zavialov
TI  - A Wiener-type Tauberian theorem for generalized functions of slow growth
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1047
EP  - 1086
VL  - 189
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_7_a4/
LA  - en
ID  - SM_1998_189_7_a4
ER  - 
%0 Journal Article
%A Yu. N. Drozhzhinov
%A B. I. Zavialov
%T A Wiener-type Tauberian theorem for generalized functions of slow growth
%J Sbornik. Mathematics
%D 1998
%P 1047-1086
%V 189
%N 7
%U http://geodesic.mathdoc.fr/item/SM_1998_189_7_a4/
%G en
%F SM_1998_189_7_a4
Yu. N. Drozhzhinov; B. I. Zavialov. A Wiener-type Tauberian theorem for generalized functions of slow growth. Sbornik. Mathematics, Tome 189 (1998) no. 7, pp. 1047-1086. http://geodesic.mathdoc.fr/item/SM_1998_189_7_a4/

[1] Wiener N., “Tauberian theorems”, Ann. of Math., 33:1 (1932), 1–100 | DOI | MR | Zbl

[2] Viner N., Integral Fure i nekotorye ego primeneniya, Fizmatgiz, M., 1963

[3] Karamata J., “Neuer Beweis und Verallgemeinerung der Tauberschen Sätze, welche die Laplacesche und Stieltjesche Transformation betreffen”, J. Reine Angew. Math., 164:1 (1931), 27–29 | MR

[4] Beurling A., “Sur les integrales de Tourier absolument convergentas”, Congr. math. scand. (Helsinki, 1938)

[5] Ganelius T., Tauberian remeinder theorems, Springer-Verlag, Berlin, 1971 | MR | Zbl

[6] Korenblyum B. I., “Obobschenie tauberovoi teoremy Vinera i garmonicheskii analiz bystrorastuschikh funktsii”, Tr. MMO, 7, URSS, M., 1958, 121–148 | MR

[7] Komech A. I., “Uravneniya s odnorodnymi yadrami i preobrazovanie Mellina obobschennykh funktsii”, TMF, 27:2 (1976), 149–162 | MR | Zbl

[8] Zemanyan A. G., Integralnye preobrazovaniya obobschennykh funktsii, Nauka, M., 1974 | MR

[9] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl

[10] Vladimirov V. S., Drozhzhinov Yu. N., Zavyalov B. I., Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986 | MR

[11] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR

[12] Peetre J., “On the value of a distribution at a point”, Portugal. Math., 27 (1968), 243–259 | MR

[13] Korevaar J., “Distribution proof of Wiener's Tauberian theorem”, Proc. Amer. Math. Soc., 164 (1965), 333–355 | MR

[14] Pilipović S., Stanković B., “Wiener Tauberian Theorems for Distribution”, J. London Math. Soc., 47:2 (1993), 507–515 | DOI | MR | Zbl

[15] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Vyp. 1, Fizmatgiz, M., 1959