Birational automorphisms of a~three-dimensional double cone
Sbornik. Mathematics, Tome 189 (1998) no. 7, pp. 991-1007
Voir la notice de l'article provenant de la source Math-Net.Ru
Birational rigidity is proved for a three-dimensional double cone, that is, a double cover of a quadric cone in $\mathbb P^2$ with branching in a smooth section of a quartic, and its non-rationality and the absence of conic bundle structures are also proved. The group of birational automorphisms of this variety is computed.
@article{SM_1998_189_7_a2,
author = {M. M. Grinenko},
title = {Birational automorphisms of a~three-dimensional double cone},
journal = {Sbornik. Mathematics},
pages = {991--1007},
publisher = {mathdoc},
volume = {189},
number = {7},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_7_a2/}
}
M. M. Grinenko. Birational automorphisms of a~three-dimensional double cone. Sbornik. Mathematics, Tome 189 (1998) no. 7, pp. 991-1007. http://geodesic.mathdoc.fr/item/SM_1998_189_7_a2/