Asymptotic behaviour of the spectral function of the Laplace–Beltrami operator for cocompact discrete subgroups of $\operatorname {SL}_2(\mathbb R)$
Sbornik. Mathematics, Tome 189 (1998) no. 7, pp. 977-990 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An asymptotic formula, uniform in $z$ and $z'$, is obtained for the spectral function $\theta (z,z',\lambda )$ of the Laplace–Beltrami operator for cocompact discrete subgroups of $\operatorname {SL}_2(\mathbb R)$ with power-law lowering of the order of the remainder.
@article{SM_1998_189_7_a1,
     author = {V. V. Golovchanskii},
     title = {Asymptotic behaviour of the~spectral function of {the~Laplace{\textendash}Beltrami} operator for cocompact discrete subgroups of $\operatorname {SL}_2(\mathbb R)$},
     journal = {Sbornik. Mathematics},
     pages = {977--990},
     year = {1998},
     volume = {189},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_7_a1/}
}
TY  - JOUR
AU  - V. V. Golovchanskii
TI  - Asymptotic behaviour of the spectral function of the Laplace–Beltrami operator for cocompact discrete subgroups of $\operatorname {SL}_2(\mathbb R)$
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 977
EP  - 990
VL  - 189
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_7_a1/
LA  - en
ID  - SM_1998_189_7_a1
ER  - 
%0 Journal Article
%A V. V. Golovchanskii
%T Asymptotic behaviour of the spectral function of the Laplace–Beltrami operator for cocompact discrete subgroups of $\operatorname {SL}_2(\mathbb R)$
%J Sbornik. Mathematics
%D 1998
%P 977-990
%V 189
%N 7
%U http://geodesic.mathdoc.fr/item/SM_1998_189_7_a1/
%G en
%F SM_1998_189_7_a1
V. V. Golovchanskii. Asymptotic behaviour of the spectral function of the Laplace–Beltrami operator for cocompact discrete subgroups of $\operatorname {SL}_2(\mathbb R)$. Sbornik. Mathematics, Tome 189 (1998) no. 7, pp. 977-990. http://geodesic.mathdoc.fr/item/SM_1998_189_7_a1/

[1] Venkov A. B., “Spektralnaya teoriya avtomorfnykh funktsii, dzeta-funktsiya Selberga i nekotorye problemy analiticheskoi teorii chisel i matematicheskoi fiziki”, UMN, 34:3 (1979), 69–135 | MR | Zbl

[2] Berdon A., Geometriya diskretnykh grupp, Nauka, M., 1986 | MR

[3] Hejhal D. A., The Selberg trace formula for $\operatorname{PSL}(2,R)$, 1, Lect. Notes in Math., 548, 1976 | MR | Zbl

[4] Babich V. M., Levitan B. M., “Zadacha o fokusirovke i asimptotika spektralnoi funktsii operatora Laplasa–Beltrami”, Dokl. AN SSSR, 230:5 (1976), 1017–1020 | MR | Zbl

[5] Sarnak P., Arithmetic quantum chaos, Preprint, Princeton Univ., Princeton, 1994 | MR

[6] Selberg A., “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series”, J. Indian Math. Soc., 20 (1956), 47–87 | MR | Zbl

[7] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Nauka, M., 1981 | MR | Zbl

[8] Lax P. D., Phillips R. S., “The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces”, J. Funct. Anal., 46 (1982), 280–350 | DOI | MR | Zbl

[9] Seger A., Sogge C., “Bounds for eigenfunctions of differential operators”, Indian J. Math., 38 (1989), 669–682 | DOI | MR