Extremal problems on Pompeiu sets
Sbornik. Mathematics, Tome 189 (1998) no. 7, pp. 955-976

Voir la notice de l'article provenant de la source Math-Net.Ru

The local Pompeiu problem and related questions about functions with vanishing integrals over parallelepipeds are studied. One of the central results of the paper is the solution of the problem about the ball of smallest radius in which parallelepipeds of fixed size have the Pompeiu property. Several results of interest for complex analysis and approximation theory are obtained as consequences.
@article{SM_1998_189_7_a0,
     author = {V. V. Volchkov},
     title = {Extremal problems on {Pompeiu} sets},
     journal = {Sbornik. Mathematics},
     pages = {955--976},
     publisher = {mathdoc},
     volume = {189},
     number = {7},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_7_a0/}
}
TY  - JOUR
AU  - V. V. Volchkov
TI  - Extremal problems on Pompeiu sets
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 955
EP  - 976
VL  - 189
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_7_a0/
LA  - en
ID  - SM_1998_189_7_a0
ER  - 
%0 Journal Article
%A V. V. Volchkov
%T Extremal problems on Pompeiu sets
%J Sbornik. Mathematics
%D 1998
%P 955-976
%V 189
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_7_a0/
%G en
%F SM_1998_189_7_a0
V. V. Volchkov. Extremal problems on Pompeiu sets. Sbornik. Mathematics, Tome 189 (1998) no. 7, pp. 955-976. http://geodesic.mathdoc.fr/item/SM_1998_189_7_a0/