The defects of admissible balls and octahedra in a lattice, and systems of generic representatives
Sbornik. Mathematics, Tome 189 (1998) no. 6, pp. 931-954 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let ${\mathscr E}=O\,\mathbf e_1,\dots,\mathbf e_n$ be the frame of unit coordinate vectors, let $\Lambda \subset \mathbb R^n$ such that ${\mathbb Z}^n\subset \Lambda$, let ${\mathscr O}_{\mathscr E}^n$ be the unit octahedron, and let ${\mathscr B}_{\mathscr E}^n$ be the unit ball. A set $\Omega \in \{{\mathscr O}_{\mathscr E}^n,{\mathscr B}_{\mathscr E}^n\}$ is said to be admissible in $\Lambda$ if $\Omega \cap \Lambda =\{O,\pm \mathbf e_1,\dots ,\pm \mathbf e_n\}$. The defect $d(\Omega;\Lambda)$, with respect to $\Lambda$, of a set $\Omega$ admissible in $\Lambda$ is the smallest number of vectors to be deleted from ${\mathscr E}$ in order that the remaining system can be complemented to a basis in $\Lambda$. Let $d_n(\Omega)=\max _\Lambda d(\Omega;\Lambda)$ and let $d_n^*(\Omega)=\max _\Lambda ^*d(\Omega;\Lambda)$, where the maximum is taken over all $\Lambda$ in the first case and over all $\Lambda$ such that $\Lambda /{\mathbb Z}^n$ is a cyclic group in the second. It is shown that $d_n^*(\Omega)\gg \frac n{\log n}(\log \log n)^2$ and $d_n(\Omega)\geqslant n-c\frac n{\log n}$, where $c$ is an absolute constant.These results are obtained using methods of geometry and combinatorial analysis.
@article{SM_1998_189_6_a4,
     author = {A. M. Raigorodskii},
     title = {The defects of admissible balls and octahedra in a~lattice, and systems of generic representatives},
     journal = {Sbornik. Mathematics},
     pages = {931--954},
     year = {1998},
     volume = {189},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_6_a4/}
}
TY  - JOUR
AU  - A. M. Raigorodskii
TI  - The defects of admissible balls and octahedra in a lattice, and systems of generic representatives
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 931
EP  - 954
VL  - 189
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_6_a4/
LA  - en
ID  - SM_1998_189_6_a4
ER  - 
%0 Journal Article
%A A. M. Raigorodskii
%T The defects of admissible balls and octahedra in a lattice, and systems of generic representatives
%J Sbornik. Mathematics
%D 1998
%P 931-954
%V 189
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1998_189_6_a4/
%G en
%F SM_1998_189_6_a4
A. M. Raigorodskii. The defects of admissible balls and octahedra in a lattice, and systems of generic representatives. Sbornik. Mathematics, Tome 189 (1998) no. 6, pp. 931-954. http://geodesic.mathdoc.fr/item/SM_1998_189_6_a4/

[1] Moschevitin N. G., “Defekt dopustimogo oktaedra v reshetke”, Matem. zametki, 58:4 (1995), 558–568 | MR | Zbl

[2] Kuzyurin N. N., “Asimptoticheskoe issledovanie zadachi o pokrytii”, Problemy kibernetiki, 1980, no. 37, 19–56 | MR | Zbl

[3] Gruber P. M., Lekkerkerker C. G., Geometry of numbers, North-Holland, Amsterdam, 1987 | MR | Zbl

[4] Korobov N. M., Teoretikochislovye metody v priblizhennom analize, Fizmatlit, M., 1963 | MR

[5] Wessels U., Die Sätze von White und Mordell über kritische hitter von polytopen in der dimensionen $4$ und $5$, Diplomarbeit. Preprint, Mathematisches Institute der Ruhr – Universität Bochum, 1989

[6] Ryshkov S. S., “K probleme otyskaniya sovershennykh kvadratichnykh form ot mnogikh peremennykh”, Tr. MIAN, 142, Nauka, M., 1976, 215–239 | MR | Zbl

[7] Zakharova N. V., “Tsentrirovki $8$-mernykh reshetok, sokhranyayuschie reper posledovatelnykh minimumov”, Tr. MIAN, 152, Nauka, M., 1980, 97–123 | MR | Zbl