@article{SM_1998_189_6_a3,
author = {V. P. Maslov and A. S. Mishchenko},
title = {Quasi-classical asymptotics of quasi-particles},
journal = {Sbornik. Mathematics},
pages = {901--930},
year = {1998},
volume = {189},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_6_a3/}
}
V. P. Maslov; A. S. Mishchenko. Quasi-classical asymptotics of quasi-particles. Sbornik. Mathematics, Tome 189 (1998) no. 6, pp. 901-930. http://geodesic.mathdoc.fr/item/SM_1998_189_6_a3/
[1] Bogolyubov N. N., “K teorii sverkhtekuchesti”, Izv. AN SSSR. Ser. fiz., 11:1 (1947), 77–90 | MR
[2] Maslov V. P., Shvedov O. Yu., “Quantization in the neighborhood of classical solutions in the $N$ particle problem and superfluidity”, Theoret. and Math. Phys., 98:2 (1994), 181–196 | DOI | MR | Zbl
[3] Maslov V. P., “Quasi-Particles Assosiated with Lagrangian Manifolds Corresponding to Classiacal Self-Consistent Fields. I; II; III”, Russian J. Math. Phys., 2:4 (1995), 527–534 | MR
[4] Maslov V. P., “Ob integralnom uravnenii vida $u(x)=F(x)+\int G(x,\xi)u_+^{k/2}(\xi)\,d\xi/\allowmathbreak \int u_+^{k/2}(\xi)\,d\xi$”, Funkts. analiz i ego prilozh., 28:1 (1994), 41–50 | MR | Zbl
[5] Maslov V. P., “Ob integralnom uravnenii vida $u(x)=F(x)+\int G(x,\xi)u_+^{k/2}(\xi)\,d\xi/\allowmathbreak \int u_+^{k/2}(\xi)\,d\xi$ v sluchayakh $n=2$ i $3$”, Matem. zametki, 55:3 (1994), 96–108 | MR | Zbl
[6] Maslov V. P., “Kvaziklassicheskaya asimptotika sobstvennykh funktsii uravneniya Shrëdingera–Khartri. Novyi vid klassicheskogo samosoglasovannogo polya”, TMF, 99:1 (1994), 141–154 | MR | Zbl