Quasi-classical asymptotics of quasi-particles
Sbornik. Mathematics, Tome 189 (1998) no. 6, pp. 901-930 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $n$-particle problem of the Schrodinger–Laplace–Beltrami equation on a manifold with an arbitrary interaction potential between particles is studied. A pseudodifferential operator $(\operatorname {mod}h^\infty )$ on the manifold is obtained that describes the energy level of the Hamiltonian for a self-consistent field. The equations for a quasi-particle are the variational equations for the non-linear Wigner equation corresponding to the Hartree equation. Expressions are obtained for both the asymptotics of the steady-state Wigner–Hartree equation corresponding to an energy level in the ergodic situation, and the asymptotics of a generalized eigenfunction of the variational equation corresponding to the same energy level manifold. The asymptotic recursion relations for the indicated problem in the case studied by Bogolyubov reduce to his results.
@article{SM_1998_189_6_a3,
     author = {V. P. Maslov and A. S. Mishchenko},
     title = {Quasi-classical asymptotics of quasi-particles},
     journal = {Sbornik. Mathematics},
     pages = {901--930},
     year = {1998},
     volume = {189},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_6_a3/}
}
TY  - JOUR
AU  - V. P. Maslov
AU  - A. S. Mishchenko
TI  - Quasi-classical asymptotics of quasi-particles
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 901
EP  - 930
VL  - 189
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_6_a3/
LA  - en
ID  - SM_1998_189_6_a3
ER  - 
%0 Journal Article
%A V. P. Maslov
%A A. S. Mishchenko
%T Quasi-classical asymptotics of quasi-particles
%J Sbornik. Mathematics
%D 1998
%P 901-930
%V 189
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1998_189_6_a3/
%G en
%F SM_1998_189_6_a3
V. P. Maslov; A. S. Mishchenko. Quasi-classical asymptotics of quasi-particles. Sbornik. Mathematics, Tome 189 (1998) no. 6, pp. 901-930. http://geodesic.mathdoc.fr/item/SM_1998_189_6_a3/

[1] Bogolyubov N. N., “K teorii sverkhtekuchesti”, Izv. AN SSSR. Ser. fiz., 11:1 (1947), 77–90 | MR

[2] Maslov V. P., Shvedov O. Yu., “Quantization in the neighborhood of classical solutions in the $N$ particle problem and superfluidity”, Theoret. and Math. Phys., 98:2 (1994), 181–196 | DOI | MR | Zbl

[3] Maslov V. P., “Quasi-Particles Assosiated with Lagrangian Manifolds Corresponding to Classiacal Self-Consistent Fields. I; II; III”, Russian J. Math. Phys., 2:4 (1995), 527–534 | MR

[4] Maslov V. P., “Ob integralnom uravnenii vida $u(x)=F(x)+\int G(x,\xi)u_+^{k/2}(\xi)\,d\xi/\allowmathbreak \int u_+^{k/2}(\xi)\,d\xi$”, Funkts. analiz i ego prilozh., 28:1 (1994), 41–50 | MR | Zbl

[5] Maslov V. P., “Ob integralnom uravnenii vida $u(x)=F(x)+\int G(x,\xi)u_+^{k/2}(\xi)\,d\xi/\allowmathbreak \int u_+^{k/2}(\xi)\,d\xi$ v sluchayakh $n=2$ i $3$”, Matem. zametki, 55:3 (1994), 96–108 | MR | Zbl

[6] Maslov V. P., “Kvaziklassicheskaya asimptotika sobstvennykh funktsii uravneniya Shrëdingera–Khartri. Novyi vid klassicheskogo samosoglasovannogo polya”, TMF, 99:1 (1994), 141–154 | MR | Zbl