Growth of entire and meromorphic functions
Sbornik. Mathematics, Tome 189 (1998) no. 6, pp. 875-899

Voir la notice de l'article provenant de la source Math-Net.Ru

The influence of the number of 'separated' maximum modulus points of a meromorphic function $f(z)$ on the circle $\{z:|z|=r\}$ on the quantity $$ b(\infty ,f)=\liminf _{r\to \infty }\log ^+ \max _{|z|=r}\frac {|f(z)|}{rT'_-(r,f)}\,, $$ is investigated, where $T'_-(r,f)$ is the left-hand derivative of the Nevanlinna characteristic. Sharp estimates of the corresponding values are obtained. Sharp estimates of the quantities $b(a,f)$ and $\sum _{a\in \mathbb C}b(a,f)$ in terms of the Valiron deficiency $\Delta (a,f)$ and the Valiron deficiency $\Delta (0,f')$ of zero for the derivative, respectively, are also obtained.
@article{SM_1998_189_6_a2,
     author = {I. I. Marchenko},
     title = {Growth of entire and meromorphic functions},
     journal = {Sbornik. Mathematics},
     pages = {875--899},
     publisher = {mathdoc},
     volume = {189},
     number = {6},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_6_a2/}
}
TY  - JOUR
AU  - I. I. Marchenko
TI  - Growth of entire and meromorphic functions
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 875
EP  - 899
VL  - 189
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_6_a2/
LA  - en
ID  - SM_1998_189_6_a2
ER  - 
%0 Journal Article
%A I. I. Marchenko
%T Growth of entire and meromorphic functions
%J Sbornik. Mathematics
%D 1998
%P 875-899
%V 189
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_6_a2/
%G en
%F SM_1998_189_6_a2
I. I. Marchenko. Growth of entire and meromorphic functions. Sbornik. Mathematics, Tome 189 (1998) no. 6, pp. 875-899. http://geodesic.mathdoc.fr/item/SM_1998_189_6_a2/