Growth of entire and meromorphic functions
Sbornik. Mathematics, Tome 189 (1998) no. 6, pp. 875-899
Voir la notice de l'article provenant de la source Math-Net.Ru
The influence of the number of 'separated' maximum modulus points of a meromorphic function $f(z)$ on the circle $\{z:|z|=r\}$ on the quantity
$$
b(\infty ,f)=\liminf _{r\to \infty }\log ^+
\max _{|z|=r}\frac {|f(z)|}{rT'_-(r,f)}\,,
$$
is investigated, where $T'_-(r,f)$ is the left-hand derivative of the Nevanlinna characteristic. Sharp estimates of the corresponding values are obtained. Sharp estimates of the quantities $b(a,f)$ and $\sum _{a\in \mathbb C}b(a,f)$ in terms of the Valiron deficiency $\Delta (a,f)$ and the Valiron deficiency $\Delta (0,f')$ of zero for the derivative, respectively, are also obtained.
@article{SM_1998_189_6_a2,
author = {I. I. Marchenko},
title = {Growth of entire and meromorphic functions},
journal = {Sbornik. Mathematics},
pages = {875--899},
publisher = {mathdoc},
volume = {189},
number = {6},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_6_a2/}
}
I. I. Marchenko. Growth of entire and meromorphic functions. Sbornik. Mathematics, Tome 189 (1998) no. 6, pp. 875-899. http://geodesic.mathdoc.fr/item/SM_1998_189_6_a2/