Multivalued solutions of first-order partial differential equations
Sbornik. Mathematics, Tome 189 (1998) no. 6, pp. 849-873 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concept of multivalued solution of a first-order partial differential equation is introduced. This is a development of the concept of a minimax solution, the definition of which is based on the weak invariance property with respect to the characteristic inclusions. The need to consider such solutions occurs, for example, when first-order partial differential equations do not satisfy the known conditions ensuring the existence of unique continuous viscosity and minimax solutions. As an illustration of the concept of multivalued solutions, the Cauchy problem for the Hamilton-Jacobi equation is discussed. By contrast to results known in the theory of viscosity and minimax solutions, it is not required here that the Hamiltonian satisfy the Lipschitz condition with respect to the phase variable or some modification of this condition. A boundary-value problem of Dirichlet kind for first-order partial differential equations is also considered. As is known, a minimax solution of it exists under certain assumptions and is unique in the class of discontinuous functions. In place of discontinuous solutions one can consider the corresponding multivalued solutions, which makes the study of such problems easier.
@article{SM_1998_189_6_a1,
     author = {A. S. Lakhtin and A. I. Subbotin},
     title = {Multivalued solutions of first-order partial differential equations},
     journal = {Sbornik. Mathematics},
     pages = {849--873},
     year = {1998},
     volume = {189},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_6_a1/}
}
TY  - JOUR
AU  - A. S. Lakhtin
AU  - A. I. Subbotin
TI  - Multivalued solutions of first-order partial differential equations
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 849
EP  - 873
VL  - 189
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_6_a1/
LA  - en
ID  - SM_1998_189_6_a1
ER  - 
%0 Journal Article
%A A. S. Lakhtin
%A A. I. Subbotin
%T Multivalued solutions of first-order partial differential equations
%J Sbornik. Mathematics
%D 1998
%P 849-873
%V 189
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1998_189_6_a1/
%G en
%F SM_1998_189_6_a1
A. S. Lakhtin; A. I. Subbotin. Multivalued solutions of first-order partial differential equations. Sbornik. Mathematics, Tome 189 (1998) no. 6, pp. 849-873. http://geodesic.mathdoc.fr/item/SM_1998_189_6_a1/

[1] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona–Yakobi, Nauka, M., 1991 | MR

[2] Subbotin A. I., “Minimaksnye resheniya uravnenii s chastnymi proizvodnymi pervogo poryadka”, UMN, 51:2 (1996), 105–138 | MR | Zbl

[3] Subbotin A. I., Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspective, Birkhäuser, Boston, 1995 | MR

[4] Crandall M. G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277 (1983), 1–42 | DOI | MR | Zbl

[5] Crandall M. G., Ishii H., Lions P.-L., “Uniqueness of viscosity solutions revisited”, J. Math. Soc. Japan, 39 (1987), 581–596 | DOI | MR | Zbl

[6] Subbotin A. I., “Nepreryvnye i razryvnye resheniya kraevykh zadach dlya uravnenii s chastnymi proizvodnymi pervogo poryadka”, Dokl. AN, 323:1 (1992), 30–34 | MR | Zbl

[7] Subbotin A. I., “Discontinuous solutions of a Dirichlet type boundary value problem for the first order partial differential equation”, Russian J. Numer. Anal. Math. Modelling, 8:2 (1993), 145–164 | MR | Zbl

[8] Bardi M., Bottacin S., Falcone M., “Convergence of discrete schemes for discontinuous value functions of pursuit-evasion games”, New Trends in Dynamic Games and Applications, Annals of the International Society of Dynamic Games, 3, Birkhäuser, Boston, 1995, 273–304 | MR | Zbl

[9] Barles G., “Discontinuous viscosity solutions of first-order Hamilton–Jacobi equations: a guided visit”, Nonlinear Anal., 20 (1993), 1123–1134 | DOI | MR | Zbl

[10] Barron E. N., Jensen R., “Semicontinuous viscosity solutions for Hamilton–Jacobi equations with convex hamiltonians”, Comm. Partial Differential Equations, 15 (1990), 1713–1742 | DOI | MR | Zbl

[11] Barron E. N., Liu W., “Semicontinuous viscosity solutions for Hamilton–Jacobi equations and the $L_\infty$ control problem”, Appl. Math. Optim. (to appear)

[12] Aubin J.-P., Viability Theory, Birkhäuser, Boston, 1990 | MR | Zbl

[13] Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R., “Qualitative properties of trajectories of control systems: a survey”, J. Dynam. Control Systems, 1 (1995), 1–48 | DOI | MR | Zbl

[14] Kruzhkov S. N., “Obobschennye resheniya uravnenii Gamiltona–Yakobi tipa eikonala, I”, Matem. sb., 98:3 (1975), 450–493 | MR | Zbl

[15] Kolokoltsov V. N., Maslov V. P., “Zadacha Koshi dlya odnorodnogo uravneniya Bellmana”, Dokl. AN SSSR, 296:4 (1987), 796–800 | MR

[16] Clarke F. H., Ledyaev Yu. S., “Mean value inequalities in Hilbert space”, Trans. Amer. Math. Soc., 344 (1994), 307–324 | DOI | MR | Zbl

[17] Chentsov A. G., “O strukture igrovoi zadachi sblizheniya”, Dokl. AN SSSR, 224:6 (1975), 1272–1275 | MR | Zbl

[18] Chistyakov S. V., “K resheniyu igrovykh zadach presledovaniya”, Prikladnaya matem. i mekh., 41:5 (1977), 825–832 | MR | Zbl

[19] Subbotin A. I., Chentsov A. G., “Iteratsionnaya protsedura postroeniya minimaksnykh i vyazkostnykh reshenii uravnenii Gamiltona–Yakobi”, Dokl. AN (to appear)

[20] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970 | MR

[21] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR