Perturbation of a convex-valued operator by a set-valued map of Hammerstein type with non-convex values, and boundary-value problems for functional-differential inclusions
Sbornik. Mathematics, Tome 189 (1998) no. 6, pp. 821-848 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A functional inclusion in the space of continuous vector-valued functions on the interval $[a,b]$ is considered, the right-hand side of which is the sum of a convex-valued set-valued map and the product of a linear integral operator and a set-valued map with images convex with respect to switching. Estimates for the distance between a solution of this inclusion and a fixed continuous vector-valued function are obtained and the structure of the set of solutions of this inclusion is studied on the basis of these estimates. A result on the density of the solutions of this inclusion in the set of solutions of the 'convexized' inclusion is obtained and the 'bang-bang' principle for the original inclusion is established. This theory is applied to the study of the solution sets of boundary-value problems for functional-differential inclusions with non-convex right-hand sides.
@article{SM_1998_189_6_a0,
     author = {A. I. Bulgakov and L. I. Tkach},
     title = {Perturbation of a~convex-valued operator by a~set-valued map of {Hammerstein} type with non-convex values, and boundary-value problems for functional-differential inclusions},
     journal = {Sbornik. Mathematics},
     pages = {821--848},
     year = {1998},
     volume = {189},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_6_a0/}
}
TY  - JOUR
AU  - A. I. Bulgakov
AU  - L. I. Tkach
TI  - Perturbation of a convex-valued operator by a set-valued map of Hammerstein type with non-convex values, and boundary-value problems for functional-differential inclusions
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 821
EP  - 848
VL  - 189
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_6_a0/
LA  - en
ID  - SM_1998_189_6_a0
ER  - 
%0 Journal Article
%A A. I. Bulgakov
%A L. I. Tkach
%T Perturbation of a convex-valued operator by a set-valued map of Hammerstein type with non-convex values, and boundary-value problems for functional-differential inclusions
%J Sbornik. Mathematics
%D 1998
%P 821-848
%V 189
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1998_189_6_a0/
%G en
%F SM_1998_189_6_a0
A. I. Bulgakov; L. I. Tkach. Perturbation of a convex-valued operator by a set-valued map of Hammerstein type with non-convex values, and boundary-value problems for functional-differential inclusions. Sbornik. Mathematics, Tome 189 (1998) no. 6, pp. 821-848. http://geodesic.mathdoc.fr/item/SM_1998_189_6_a0/

[1] Bulgakov A. I., “Integralnye vklyucheniya s nevypuklymi obrazami i ikh prilozheniya k kraevym zadacham differentsialnykh vklyuchenii”, Matem. sb., 183:10 (1992), 63–86

[2] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[3] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[4] Michael E. A., “Selected selection theorems”, Amer. Math. Monthly, 4 (1956), 233–236 | DOI | MR

[5] Bulgakov A. I., “Nepreryvnye vetvi mnogoznachnykh otobrazhenii i integralnye vklyucheniya s nevypuklymi obrazami i ikh prilozheniya, I”, Differents. uravneniya, 28:3 (1992), 371–379 | MR | Zbl

[6] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii, Izd-vo VGU, Voronezh, 1985 | MR

[7] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR

[8] Bulgakov A. I., “Nekotorye voprosy differentsialnykh i integralnykh vklyuchenii s nevypukloi pravoi chastyu”, Funktsionalno-differentsialnye uravneniya, PPI, Perm, 1991, 28–57 | MR

[9] Bulgakov A. I., “Nepreryvnye vetvi mnogoznachnykh otobrazhenii i integralnye vklyucheniya s nevypuklymi obrazami i ikh prilozheniya. II; III”, Differents. uravneniya, 28:4 (1992), 566–571 ; 5, 739–746 | MR | Zbl | MR | Zbl

[10] Bulgakov A. I., Vasileva I. V., “Suschestvovanie reshenii vklyucheniya Gammershteina s nevypuklymi obrazami”, Vestnik TGU, 1:2 (1996), 95–98 | MR

[11] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR

[12] Lyapin L. N., “Mnozhestvennoznachnye otobrazheniya v teorii integralnykh uravnenii s razryvnym operatorom”, Differents. uravneniya, 9:8 (1973), 1511–1519 | MR | Zbl

[13] Lyapin L. N., “Nepreryvnye resheniya integralnykh vklyuchenii”, Differents. uravneniya, 10:11 (1974), 2048–2055 | MR | Zbl

[14] Irisov A. E., Tonkova V. S., Tonkov E. L., “Periodicheskie resheniya differentsialnogo vklyucheniya”, Nelineinye kolebaniya i teoriya upravleniya, no. 2, UdGU, Izhevsk, 1978, 3–15 | MR

[15] Irisov A. E., Tonkov E. L., “O zamykanii mnozhestva periodicheskikh reshenii differentsialnogo vklyucheniya”, Differentsialnye i integralnye uravneniya, Izd-vo GGU, Gorkii, 1983, 32–38 | MR

[16] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl

[17] Plis A., “On trajectories of orientor fields”, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys., 13:8 (1965), 571–573 | MR | Zbl

[18] Filippov A. F., “Klassicheskie resheniya differentsialnykh uravnenii s mnogoznachnoi pravoi chastyu”, Vestn. MGU. Ser. 1. Matem., mekh., 1967, no. 3, 16–26 | Zbl

[19] Chugunov P. I., “Svoistva reshenii differentsialnykh vklyuchenii i upravlyaemye sistemy”, Prikladnaya matematika i pakety prikladnykh programm, Izd-vo SEISO AN SSSR, Irkutsk, 1980, 155–179

[20] Tolstonogov A. A., Chugunov P. I., “O mnozhestve reshenii differentsialnogo vklyucheniya v banakhovom prostranstve”, Sib. matem. zhurn., 24:6 (1983), 144–159 | MR | Zbl

[21] Blagodatskikh V. I., “Nekotorye rezultaty po teorii differentsialnykh vklyuchenii”, Summer School on Ordinary Differential Equations, Part II (Crechoslovakia, Brno, 1974), 29–67

[22] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. MIAN, 169, Nauka, M., 1985, 194–252 | MR | Zbl

[23] Blagodatskikh V. I., Teoriya differentsialnykh vklyuchenii, Chast I, Izd-vo MGU, M., 1979

[24] Borisovich B. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Mnogoznachnye otobrazheniya”, Itogi nauki i tekhniki. Matem. analiz, 19, VINITI, M., 1982, 127–231 | MR

[25] Polovinkin E. S., Teoriya mnogoznachnykh otobrazhenii, MFTI, M., 1982

[26] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981 | MR

[27] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986 | MR | Zbl

[28] Bulgakov A. I., “Funktsionalno-differentsialnye vklyucheniya s nevypukloi pravoi chastyu”, Differents. uravneniya, 26:11 (1990), 1872–1878 | MR | Zbl

[29] Suslov S. I., Nelineinyi beng-beng printsip. I: Konechnomernyi sluchai, Preprint No 11, In-t matem. SO AN SSSR, Novosibirsk, 1989

[30] Suslov S. I., Nelineinyi beng-beng printsip. II: Beskonechnomernyi sluchai, Preprint No 12, In-t matem. SO AN SSSR, Novosibirsk, 1989

[31] Bressan A., “On a bang-bang principle for nonlinear systems”, Boll. Un. Mat. Ital. A(7), 1 (1980), 53–59 | MR | Zbl

[32] Hermes H., “On continuous and measurable selections and the existence of solutions of generalized differential equations”, Proc. Amer. Math. Soc., 29:3 (1971), 535–542 | DOI | MR

[33] Hermes H., “The generalized differential equation $\dot x\in R(t,x)$”, Adv. Math., 4:2 (1970), 149–169 | DOI | MR | Zbl

[34] Olech C., “Lexicographical order, range of integrals and “Bang-bang” principle”, Mathematical theory of control, Acad. Press, New York, 1967, 35–45 | MR

[35] Papargeorgiou N. S., “Functional-differential unclusions in Banach spaces with nonconvex right hand side”, Funkcial. Ekvac., 32 (1989), 145–156 | MR

[36] Pianigiani G., “On the fundamental theory of multivalued differential equations”, J. Differential Equations, 25:1 (1977), 30–38 | DOI | MR | Zbl

[37] Tolstonogov A. A., Finogenko I. A., “O resheniyakh differentsialnogo vklyucheniya s polunepreryvnoi snizu nevypukloi pravoi chastyu v banakhovom prostranstve”, Matem. sb., 125 (167):2 (10) (1984), 199–230 | MR