@article{SM_1998_189_5_a5,
author = {O. V. Pugachev},
title = {The {Gauss-Ostrogradskii} formula in infinite-dimensional space},
journal = {Sbornik. Mathematics},
pages = {757--770},
year = {1998},
volume = {189},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_5_a5/}
}
O. V. Pugachev. The Gauss-Ostrogradskii formula in infinite-dimensional space. Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 757-770. http://geodesic.mathdoc.fr/item/SM_1998_189_5_a5/
[1] Skorokhod A. V., Integrirovanie v gilbertovom prostranstve, Nauka, M., 1975
[2] Efimova E. I., Uglanov A. V., “Formula Grina na gilbertovom prostranstve”, Matem. sb., 119:2 (1982), 225–232 | MR | Zbl
[3] Efimova E. I., Uglanov A. V., “Formuly vektornogo analiza na banakhovom prostranstve”, Dokl. AN, 271:6 (1983), 1302–1306 | MR
[4] Uglanov A. V., “Poverkhnostnye mery v banakhovom prostranstve”, Matem. sb., 110:2 (1979), 189–217 | MR | Zbl
[5] Uglanov A. V., “Poverkhnostnye integraly v lineinykh topologicheskikh prostranstvakh”, Dokl. AN, 344:4 (1995), 450–453 | MR | Zbl
[6] Airault H., Malliavin P., “Integration geometrique sur l'espace de Wiener”, Bull. Sci. Math. (2), 112 (1988), 3–52 | MR | Zbl
[7] Bogachev V. I., Gaussovskie mery, Nauka, M., 1997 | MR
[8] Bogachev V. I., “Differentiable measures and the Malliavin calculus”, J. Math. Sci., 87:5 (1997), 3577–3731 | DOI | MR | Zbl
[9] Röckner M., Schmuland B., “Tightness of general $C_{1,p}$ capacities on Banach space”, J. Funct. Anal., 108:1 (1992), 1–12 | DOI | MR | Zbl
[10] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR