Some structure properties of conjugate functions in $L(T^N)$
Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 727-756 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Estimates of partial integral moduli of continuity of a conjugate function of several variables in terms of the corresponding moduli of continuity of the original functions are presented. In the case of a conjugate function to a function with partial moduli of continuity satisfying the Lipschitz condition the result obtained is best possible.
@article{SM_1998_189_5_a4,
     author = {V. A. Okulov},
     title = {Some structure properties of conjugate functions in $L(T^N)$},
     journal = {Sbornik. Mathematics},
     pages = {727--756},
     year = {1998},
     volume = {189},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_5_a4/}
}
TY  - JOUR
AU  - V. A. Okulov
TI  - Some structure properties of conjugate functions in $L(T^N)$
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 727
EP  - 756
VL  - 189
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_5_a4/
LA  - en
ID  - SM_1998_189_5_a4
ER  - 
%0 Journal Article
%A V. A. Okulov
%T Some structure properties of conjugate functions in $L(T^N)$
%J Sbornik. Mathematics
%D 1998
%P 727-756
%V 189
%N 5
%U http://geodesic.mathdoc.fr/item/SM_1998_189_5_a4/
%G en
%F SM_1998_189_5_a4
V. A. Okulov. Some structure properties of conjugate functions in $L(T^N)$. Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 727-756. http://geodesic.mathdoc.fr/item/SM_1998_189_5_a4/

[1] Zhizhiashvili L. V., Sopryazhennye funktsii i trigonometricheskie ryady, Izd-vo Tbil. un-ta, Tbilisi, 1969 | MR

[2] Zhizhiashvili L. V., “O nekotorykh voprosakh iz teorii prostykh i kratnykh trigonometricheskikh i ortogonalnykh ryadov”, UMN, 28:2 (1973), 65–119 | MR

[3] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[4] Zygmund A., “Sur les fonctions conjuguees”, Fund. Math., 13 (1929), 284–303 | Zbl

[5] Riesz M., “Sur les fonctions conjuguees”, Math. Z., 27 (1927), 218–244 | DOI | MR | Zbl

[6] Sokol-Sokolowski K., “On trigonometric series conjugate to Fourier series of two variables”, Fund. Math., 34 (1947), 166–182 | MR | Zbl

[7] Zhizhiashvili L. V., “Obobschenie odnoi teoremy M. Rissa na sluchai funktsii mnogikh peremennykh”, Matem. zametki, 4:3 (1963), 269–280

[8] Pandzhikidze L. K., “O skhodimosti kratnykh trigonometricheskikh ryadov v metrike $L(\mathbb R^m)$ i ob integriruemosti sopryazhennykh funktsii mnogikh peremennykh”, Soobsch. AN GSSR, 133:2 (1989), 265–267 | MR | Zbl

[9] Okulov V. A., “Mnogomernyi analog odnoi teoremy Privalova”, Matem. sb., 186:2 (1995), 93–104 | MR | Zbl

[10] Lekishvili M. M., “O sopryazhennykh funktsiyakh mnogikh peremennykh”, Soobsch. AN GSSR, 68:2 (1972), 33–34

[11] Lekishvili M. M., “Obobschennye integralnye moduli nepreryvnosti i sopryazhennye funktsii mnogikh peremennykh”, Soobsch. AN GSSR, 68:2 (1972), 277–280 | MR | Zbl