, and the Walsh-Fourier transformation.
@article{SM_1998_189_5_a3,
author = {B. I. Golubov},
title = {An analogue of a theorem of {Titchmarsh} for {Walsh-Fourier} transformations},
journal = {Sbornik. Mathematics},
pages = {707--725},
year = {1998},
volume = {189},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_5_a3/}
}
B. I. Golubov. An analogue of a theorem of Titchmarsh for Walsh-Fourier transformations. Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 707-725. http://geodesic.mathdoc.fr/item/SM_1998_189_5_a3/
[1] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR
[2] Krein S. G., Petunin Yu. I., Semenov E. I., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR
[3] Khardi G. G., Litlvud D. E., Polia G., Neravenstva, IL, M., 1948
[4] Titchmarsh E., Vvedenie v teoriyu integralov Fure, Gostekhizdat, M.-L., 1948
[5] Bellman R., “A note on a theorem of Hardy on Fourier constants”, Bull. Amer. Math. Soc., 50 (1944), 741–744 | DOI | MR | Zbl
[6] Golubov B. I., “Ob odnoi teoreme Bellmana o koeffitsientakh Fure”, Matem. sb., 185:11 (1994), 31–40 | Zbl
[7] Fine N., “The generalised Walsh functions”, Trans. Amer. Math. Soc., 69 (1950), 66–77 | DOI | MR | Zbl
[8] Schipp F., Wade W. R., Simon P., Walsh series, Akademiai Kiadó, Budapest, 1990 | MR
[9] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl
[10] Bespalov M. S., Multiplikativnye preobrazovaniya Fure v $L^p$, Rukopis. deponir. v VINITI, No. 100-82 Dep., Mosk. in-t elektronnoi tekhniki, 21 pp.
[11] Billard P., “Sur la convergence presque partout des series de Fourier–Walsh des fonctions de l'espace $L^2(0,1)$”, Studia Math., 28:3 (1967), 363–388 | MR | Zbl