An analogue of a theorem of Titchmarsh for Walsh-Fourier transformations
Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 707-725
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\hat f_c$ be the Fourier cosine transform of $f$. Then, as proved for functions of class $L^p(\mathbb R_+)$ in Titchmarsh's book 'Introduction to the theory of Fourier integrals' (1937),
$$
\mathscr H(\hat f_c)=\widehat {\mathscr B(f)}_c, \qquad
\mathscr B(\hat f_c)=\widehat {\mathscr H(f)}_c,
$$
for the Hardy operator
$$
\mathscr H(f)(x)=\int _x^{+\infty }\frac {f(y)}y\,dy, \qquad x>0,
$$
and the Hardy-Littlewood operator
$$
\mathscr B(f)(x)=\frac 1x\int _0^xf(y)\,dy, \qquad x>0.
$$
In the present paper similar equalities are proved for functions of class $L^p(\mathbb R_+)$, $1$, and the Walsh-Fourier transformation.
@article{SM_1998_189_5_a3,
author = {B. I. Golubov},
title = {An analogue of a theorem of {Titchmarsh} for {Walsh-Fourier} transformations},
journal = {Sbornik. Mathematics},
pages = {707--725},
publisher = {mathdoc},
volume = {189},
number = {5},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_5_a3/}
}
B. I. Golubov. An analogue of a theorem of Titchmarsh for Walsh-Fourier transformations. Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 707-725. http://geodesic.mathdoc.fr/item/SM_1998_189_5_a3/