An analogue of a theorem of Titchmarsh for Walsh-Fourier transformations
Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 707-725

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\hat f_c$ be the Fourier cosine transform of $f$. Then, as proved for functions of class $L^p(\mathbb R_+)$ in Titchmarsh's book 'Introduction to the theory of Fourier integrals' (1937), $$ \mathscr H(\hat f_c)=\widehat {\mathscr B(f)}_c, \qquad \mathscr B(\hat f_c)=\widehat {\mathscr H(f)}_c, $$ for the Hardy operator $$ \mathscr H(f)(x)=\int _x^{+\infty }\frac {f(y)}y\,dy, \qquad x>0, $$ and the Hardy-Littlewood operator $$ \mathscr B(f)(x)=\frac 1x\int _0^xf(y)\,dy, \qquad x>0. $$ In the present paper similar equalities are proved for functions of class $L^p(\mathbb R_+)$, $1$, and the Walsh-Fourier transformation.
@article{SM_1998_189_5_a3,
     author = {B. I. Golubov},
     title = {An analogue of a theorem of {Titchmarsh}  for {Walsh-Fourier} transformations},
     journal = {Sbornik. Mathematics},
     pages = {707--725},
     publisher = {mathdoc},
     volume = {189},
     number = {5},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_5_a3/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - An analogue of a theorem of Titchmarsh  for Walsh-Fourier transformations
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 707
EP  - 725
VL  - 189
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_5_a3/
LA  - en
ID  - SM_1998_189_5_a3
ER  - 
%0 Journal Article
%A B. I. Golubov
%T An analogue of a theorem of Titchmarsh  for Walsh-Fourier transformations
%J Sbornik. Mathematics
%D 1998
%P 707-725
%V 189
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_5_a3/
%G en
%F SM_1998_189_5_a3
B. I. Golubov. An analogue of a theorem of Titchmarsh  for Walsh-Fourier transformations. Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 707-725. http://geodesic.mathdoc.fr/item/SM_1998_189_5_a3/