Generalized localization for the double trigonometric Fourier series and the Walsh--Fourier series of functions in $L\log^+L\log^+\log^+L$
Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 657-682

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary open set $\Omega\subset I^2=[0,1)^2$ and an arbitrary function $f\in L\log^+L\log^+\log^+L(I^2)$ such that $f=0$ on $\Omega$ the double Fourier series of $f$ with respect to the trigonometric system $\Psi=\mathscr E$ and the Walsh–Paley system $\Psi=W$ is shown to converge to zero (over rectangles) almost everywhere on $\Omega$. Thus, it is proved that generalized localization almost everywhere holds on arbitrary open subsets of the square $I^2$ for the double trigonometric Fourier series and the Walsh–Fourier series of functions in the class $L\log^+L\log^+\log^+L$ (in the case of summation over rectangles). It is also established that such localization breaks down on arbitrary sets that are not dense in $I^2$, in the classes $\Phi_\Psi(L)(I^2)$ for the orthonormal system $\Psi=\mathscr E$ and an arbitrary function such that $\Phi_{\mathscr E}(u)=o(u\log^+\log^+u)$ as $u\to\infty$ or for $\Phi_W(u)=u(\log^+\log^+u)^{1-\varepsilon}$, $0\varepsilon1$.
@article{SM_1998_189_5_a1,
     author = {S. K. Bloshanskaya and I. L. Bloshanskii and T. Yu. Roslova},
     title = {Generalized localization for the double trigonometric {Fourier} series and the {Walsh--Fourier}  series of functions in $L\log^+L\log^+\log^+L$},
     journal = {Sbornik. Mathematics},
     pages = {657--682},
     publisher = {mathdoc},
     volume = {189},
     number = {5},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_5_a1/}
}
TY  - JOUR
AU  - S. K. Bloshanskaya
AU  - I. L. Bloshanskii
AU  - T. Yu. Roslova
TI  - Generalized localization for the double trigonometric Fourier series and the Walsh--Fourier  series of functions in $L\log^+L\log^+\log^+L$
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 657
EP  - 682
VL  - 189
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_5_a1/
LA  - en
ID  - SM_1998_189_5_a1
ER  - 
%0 Journal Article
%A S. K. Bloshanskaya
%A I. L. Bloshanskii
%A T. Yu. Roslova
%T Generalized localization for the double trigonometric Fourier series and the Walsh--Fourier  series of functions in $L\log^+L\log^+\log^+L$
%J Sbornik. Mathematics
%D 1998
%P 657-682
%V 189
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_5_a1/
%G en
%F SM_1998_189_5_a1
S. K. Bloshanskaya; I. L. Bloshanskii; T. Yu. Roslova. Generalized localization for the double trigonometric Fourier series and the Walsh--Fourier  series of functions in $L\log^+L\log^+\log^+L$. Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 657-682. http://geodesic.mathdoc.fr/item/SM_1998_189_5_a1/