Generalized localization for the double trigonometric Fourier series and the Walsh–Fourier series of functions in $L\log^+L\log^+\log^+L$
Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 657-682 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an arbitrary open set $\Omega\subset I^2=[0,1)^2$ and an arbitrary function $f\in L\log^+L\log^+\log^+L(I^2)$ such that $f=0$ on $\Omega$ the double Fourier series of $f$ with respect to the trigonometric system $\Psi=\mathscr E$ and the Walsh–Paley system $\Psi=W$ is shown to converge to zero (over rectangles) almost everywhere on $\Omega$. Thus, it is proved that generalized localization almost everywhere holds on arbitrary open subsets of the square $I^2$ for the double trigonometric Fourier series and the Walsh–Fourier series of functions in the class $L\log^+L\log^+\log^+L$ (in the case of summation over rectangles). It is also established that such localization breaks down on arbitrary sets that are not dense in $I^2$, in the classes $\Phi_\Psi(L)(I^2)$ for the orthonormal system $\Psi=\mathscr E$ and an arbitrary function such that $\Phi_{\mathscr E}(u)=o(u\log^+\log^+u)$ as $u\to\infty$ or for $\Phi_W(u)=u(\log^+\log^+u)^{1-\varepsilon}$, $0<\varepsilon<1$.
@article{SM_1998_189_5_a1,
     author = {S. K. Bloshanskaya and I. L. Bloshanskii and T. Yu. Roslova},
     title = {Generalized localization for the double trigonometric {Fourier} series and the {Walsh{\textendash}Fourier} series of functions in $L\log^+L\log^+\log^+L$},
     journal = {Sbornik. Mathematics},
     pages = {657--682},
     year = {1998},
     volume = {189},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_5_a1/}
}
TY  - JOUR
AU  - S. K. Bloshanskaya
AU  - I. L. Bloshanskii
AU  - T. Yu. Roslova
TI  - Generalized localization for the double trigonometric Fourier series and the Walsh–Fourier series of functions in $L\log^+L\log^+\log^+L$
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 657
EP  - 682
VL  - 189
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_5_a1/
LA  - en
ID  - SM_1998_189_5_a1
ER  - 
%0 Journal Article
%A S. K. Bloshanskaya
%A I. L. Bloshanskii
%A T. Yu. Roslova
%T Generalized localization for the double trigonometric Fourier series and the Walsh–Fourier series of functions in $L\log^+L\log^+\log^+L$
%J Sbornik. Mathematics
%D 1998
%P 657-682
%V 189
%N 5
%U http://geodesic.mathdoc.fr/item/SM_1998_189_5_a1/
%G en
%F SM_1998_189_5_a1
S. K. Bloshanskaya; I. L. Bloshanskii; T. Yu. Roslova. Generalized localization for the double trigonometric Fourier series and the Walsh–Fourier series of functions in $L\log^+L\log^+\log^+L$. Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 657-682. http://geodesic.mathdoc.fr/item/SM_1998_189_5_a1/

[1] Bloshanskii I. L., “Obobschennaya lokalizatsiya pochti vsyudu i skhodimost dvoinykh ryadov Fure”, Dokl. AN SSSR, 242:1 (1978), 11–13 | MR

[2] Bloshanskii I. L., “Ravnoskhodimost razlozhenii v kratnyi trigonometricheskii ryad Fure i integral Fure”, Matem. zametki, 18:2 (1975), 153–168 | MR

[3] Bloshanskaya S. K., Bloshanskii I. L., “Obobschennaya i slabaya obobschennaya lokalizatsiya dlya kratnykh ryadov Fure–Uolsha funktsii iz $L_p$, $p\ge1$”, Dokl. AN, 332:5 (1993), 549–552 | MR | Zbl

[4] Carleson L., “On convergence and growth of partial sums of Fourier series”, Acta Math., 116 (1966), 135–137 | DOI | MR

[5] Hunt R. A., “On the convergence of Fourier series”, Proc. Conf. (Edwardsville, 1967), SIU Press, Carbondale, Ill., 1968, 235–255 | MR

[6] Billard P., “Sur la convergence presque partout des series de Fourier-Walsh des fonctions de l'espace $L_2([0,1])$”, Studia Math., 28:3 (1966–1967), 363—388 | MR

[7] Hunt R. A., V. 2, Actes Congr. Int. Math., 1970 | MR

[8] Sjölin P., “An inequality of Paley and convergence a.e. of Walsh–Fourier series”, Ark. Mat., 7:6 (1969), 551–570 | DOI | MR | Zbl

[9] Schipp F., Wade W. R., Simon P., Pal J., Walsh series: an introduction to dyadic harmonic analysis, Akad. Kiado, Budapest, 1990 | MR

[10] Fine N. J., “On the Walsh functions”, Trans. Amer. Math. Soc., 65:3 (1949), 372–414 | DOI | MR | Zbl

[11] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[12] Bloshanskii I. L., “Struktura i geometriya maksimalnykh mnozhestv skhodimosti i neogranichennoi raskhodimosti pochti vsyudu kratnykh ryadov Fure funktsii iz $L_1$, ravnykh nulyu na zadannom mnozhestve”, Izv. AN SSSR. Ser. matem., 53:4 (1989), 675–707

[13] Bloshanskii I. L., “Generalized localization and convergence tests for double trigonometric Fourier series of functions from $L_p$, $p>1$”, Anal. Math., 7:1 (1981), 3–36 | DOI | MR

[14] Bloshanskii I. L., “Dva kriteriya slaboi obobschennoi lokalizatsii dlya kratnykh trigonometricheskikh ryadov Fure funktsii iz $L_p$, $p\ge1$”, Izv. AN SSSR. Ser. matem., 49:2 (1985), 243–282 | MR

[15] Bloshanskii I. L., Nekotorye voprosy mnogomernogo garmonicheskogo analiza, Diss. $\dots$ dokt. fiz.-matem. nauk, MIAN, M., 1991

[16] Bloshanskaya S. K., Bloshanskii I. L., “Obobschennaya lokalizatsiya dlya kratnykh ryadov Fure–Uolsha funktsii iz $L_p$, $p\ge1$”, Matem. sb., 186:2 (1995), 21–36 | MR | Zbl

[17] Sjölin P., “Convergence almost everywhere of certain singular integrals and multiple Fourier series”, Ark. Mat., 9:1 (1971), 65–90 | DOI | MR | Zbl

[18] Moricz F., “On the convergence of double orthogonal series”, Anal. Math., 2 (1976), 287–304 | DOI | MR | Zbl

[19] Fefferman C., “On the divergence of multiple Fourier series”, Bull. Amer. Math. Soc., 77:2 (1971), 191–195 | DOI | MR | Zbl

[20] Getsadze R. D., “Nepreryvnaya funktsiya s raskhodyaschimsya pochti vsyudu ryadom Fure po sisteme Uolsha–Peli”, Matem. sb., 128:2 (1985), 269–286 | MR

[21] Antonov N. Yu., “Convergence of Fourier series”, East J. Approx., 2:2 (1996), 187–196 | MR | Zbl

[22] Bloshanskii I. L., Ivanova O. K., Roslova T. Yu., “Obobschennaya lokalizatsiya i ravnoskhodimost razlozhenii v dvoinoi trigonometricheskii ryad i integral Fure funktsii iz $L(\ln^+L)^2$”, Matem. zametki, 60:3 (1996), 437–441 | MR

[23] Bloshanskaya S. K., Bloshanskii I. L., “O spravedlivosti obobschennoi lokalizatsii dlya dvoinykh ryadov Fure–Uolsha funktsii iz $L(\ln^+L)^2$”, Mezhd. konf. po teorii pribl. funktsii, Tez. dokl., Kaluga, 1996, 34–36

[24] Konyagin S. V., “On divergence of trigonometric Fourier series over cubes”, Acta Sci. Math. (Szeged), 61 (1995), 305–329 | MR | Zbl

[25] Soria F., “On an extrapolation theorem of Carleson–Sjölin with applications to a.e. convergence of Fourier series”, Studia Math., 94 (1989), 235–244 | MR | Zbl

[26] Hunt R., Taibleson M., “Almost everywhere convergence of Fourier series on the ring of integers of a local field”, SIAM J. Math. Anal., 2:4 (1971), 607–625 | DOI | MR | Zbl

[27] Körner T. W., “Everywhere divergent Fourier series”, Colloq. Math., 45:1 (1981), 103–118 | MR | Zbl

[28] Moon K. N., “On everywhere divergent Fourier–Walsh series of the class $L(\log^+\log^+L)^{1-\varepsilon}$”, Proc. Amer. Math. Soc., 50 (1975), 309–314 | DOI | MR | Zbl

[29] Bloshanskaya S. K., Bloshanskii I. L., “Slabaya obobschennaya lokalizatsiya dlya kratnykh ryadov Fure–Uolsha funktsii iz $L_p$, $p\ge1$”, Trudy MIRAN, 214, Nauka, M., 1997, 83–106 | MR | Zbl