Generalized localization for the double trigonometric Fourier series and the Walsh--Fourier series of functions in $L\log^+L\log^+\log^+L$
Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 657-682
Voir la notice de l'article provenant de la source Math-Net.Ru
For an arbitrary open set $\Omega\subset I^2=[0,1)^2$ and an arbitrary function $f\in L\log^+L\log^+\log^+L(I^2)$ such that $f=0$ on $\Omega$ the double Fourier series of $f$ with respect to the trigonometric system $\Psi=\mathscr E$ and the Walsh–Paley system $\Psi=W$ is shown to converge to zero (over rectangles) almost everywhere on $\Omega$. Thus, it is proved that generalized localization almost everywhere holds on arbitrary open subsets of the square $I^2$ for the double trigonometric Fourier series and the Walsh–Fourier series of functions in the class $L\log^+L\log^+\log^+L$ (in the case of summation over rectangles). It is also established that such localization breaks down on arbitrary sets that are not dense in $I^2$, in the classes $\Phi_\Psi(L)(I^2)$ for the orthonormal system $\Psi=\mathscr E$ and an arbitrary function such that $\Phi_{\mathscr E}(u)=o(u\log^+\log^+u)$ as $u\to\infty$ or for $\Phi_W(u)=u(\log^+\log^+u)^{1-\varepsilon}$, $0\varepsilon1$.
@article{SM_1998_189_5_a1,
author = {S. K. Bloshanskaya and I. L. Bloshanskii and T. Yu. Roslova},
title = {Generalized localization for the double trigonometric {Fourier} series and the {Walsh--Fourier} series of functions in $L\log^+L\log^+\log^+L$},
journal = {Sbornik. Mathematics},
pages = {657--682},
publisher = {mathdoc},
volume = {189},
number = {5},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_5_a1/}
}
TY - JOUR AU - S. K. Bloshanskaya AU - I. L. Bloshanskii AU - T. Yu. Roslova TI - Generalized localization for the double trigonometric Fourier series and the Walsh--Fourier series of functions in $L\log^+L\log^+\log^+L$ JO - Sbornik. Mathematics PY - 1998 SP - 657 EP - 682 VL - 189 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1998_189_5_a1/ LA - en ID - SM_1998_189_5_a1 ER -
%0 Journal Article %A S. K. Bloshanskaya %A I. L. Bloshanskii %A T. Yu. Roslova %T Generalized localization for the double trigonometric Fourier series and the Walsh--Fourier series of functions in $L\log^+L\log^+\log^+L$ %J Sbornik. Mathematics %D 1998 %P 657-682 %V 189 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1998_189_5_a1/ %G en %F SM_1998_189_5_a1
S. K. Bloshanskaya; I. L. Bloshanskii; T. Yu. Roslova. Generalized localization for the double trigonometric Fourier series and the Walsh--Fourier series of functions in $L\log^+L\log^+\log^+L$. Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 657-682. http://geodesic.mathdoc.fr/item/SM_1998_189_5_a1/