Order estimates of the modulus of variation of the sum of a lacunary trigonometric series
Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 639-656 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find order estimates for the modulus of variation and the averaged modulus of the sum of a lacunary trigonometric series in terms of its coefficients. These interesting global characteristics of a function and their applications have been studied in papers by Chanturiya, Dolzhenko, Sevast'yanov, Sendov, Popov, and others. Since the sum of a lacunary trigonometric series has frequently been used in the theory of functions to provide an example of a function having one property or another, it is useful to know as much as possible about such a function, especially such global characteristics as the modulus of variation and the averaged modulus. We also give necessary and sufficient conditions for the sum of a lacunary trigonometric series to belong to certain classes of functions defined in terms of these characteristics.
@article{SM_1998_189_5_a0,
     author = {A. S. Belov},
     title = {Order estimates of the~modulus of variation of the~sum of a~lacunary trigonometric series},
     journal = {Sbornik. Mathematics},
     pages = {639--656},
     year = {1998},
     volume = {189},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_5_a0/}
}
TY  - JOUR
AU  - A. S. Belov
TI  - Order estimates of the modulus of variation of the sum of a lacunary trigonometric series
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 639
EP  - 656
VL  - 189
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_5_a0/
LA  - en
ID  - SM_1998_189_5_a0
ER  - 
%0 Journal Article
%A A. S. Belov
%T Order estimates of the modulus of variation of the sum of a lacunary trigonometric series
%J Sbornik. Mathematics
%D 1998
%P 639-656
%V 189
%N 5
%U http://geodesic.mathdoc.fr/item/SM_1998_189_5_a0/
%G en
%F SM_1998_189_5_a0
A. S. Belov. Order estimates of the modulus of variation of the sum of a lacunary trigonometric series. Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 639-656. http://geodesic.mathdoc.fr/item/SM_1998_189_5_a0/

[1] Chanturiya Z. A., “Modul izmeneniya i ego primenenie v teorii ryadov Fure”, Dokl. AN SSSR, 214:1 (1974), 63–66 | MR | Zbl

[2] Sevastyanov E. A., “Kusochno-monotonnaya approksimatsiya i $\Phi$-variatsii”, Anal. Math., 1:2 (1975), 141–164 | DOI | MR | Zbl

[3] Sendov B., Popov V., Usrednennye moduli gladkosti, Mir, M., 1988 | MR

[4] Dolzhenko E. P., Sevastyanov E. A., “O priblizhenii funktsii v khausdorfovoi metrike posredstvom kusochno-monotonnykh (v chastnosti, ratsionalnykh) funktsii”, Matem. sb., 101:4 (1976), 508–541 | MR | Zbl

[5] Sevastyanov E. A., “Srednii modul kolebaniya i kusochno-monotonnaya approksimatsiya”, Matem. zametki, 31:6 (1982), 867–876 | MR

[6] Avdispahic M., “Concepts of generalized bounded variation and the theory of Fourier series”, Internat. J. Math. Math. Sci., 9:2 (1986), 223–244 | DOI | MR | Zbl

[7] Belov A. S., “Lakunarnye trigonometricheskie ryady i funktsii obobschennoi ogranichennoi variatsii”, Soobscheniya AN GSSR, 134:3 (1989), 49–52 | MR

[8] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR

[9] Belov A. S., “On some local properties of the sum of lacunary trigonometric series”, Anal. Math., 14:1 (1988), 65–97 | DOI | MR | Zbl

[10] Belov A. S., “O neravenstve Sidona–Zigmunda v teorii lakunarnykh trigonometricheskikh ryadov”, Matem. zametki, 30:4 (1981), 501–515 | MR | Zbl

[11] Belov A. S., “O summe lakunarnogo ryada”, Tr. MMO, 33, URSS, M., 1975, 107–153 | MR | Zbl