Modules over hereditary rings
Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 623-638
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be a hereditary Noetherian prime ring that is not right primitive. A complete description of $\pi$-injective $A$-modules is obtained. Conditions under which the classical ring of quotients of $A$ is a $\pi$-projective $A$-module are determined. A criterion for a right hereditary right Noetherian prime ring to be serial is obtained.
@article{SM_1998_189_4_a5,
author = {A. A. Tuganbaev},
title = {Modules over hereditary rings},
journal = {Sbornik. Mathematics},
pages = {623--638},
publisher = {mathdoc},
volume = {189},
number = {4},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_4_a5/}
}
A. A. Tuganbaev. Modules over hereditary rings. Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 623-638. http://geodesic.mathdoc.fr/item/SM_1998_189_4_a5/