Modules over hereditary rings
Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 623-638

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a hereditary Noetherian prime ring that is not right primitive. A complete description of $\pi$-injective $A$-modules is obtained. Conditions under which the classical ring of quotients of $A$ is a $\pi$-projective $A$-module are determined. A criterion for a right hereditary right Noetherian prime ring to be serial is obtained.
@article{SM_1998_189_4_a5,
     author = {A. A. Tuganbaev},
     title = {Modules over hereditary rings},
     journal = {Sbornik. Mathematics},
     pages = {623--638},
     publisher = {mathdoc},
     volume = {189},
     number = {4},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_4_a5/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Modules over hereditary rings
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 623
EP  - 638
VL  - 189
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_4_a5/
LA  - en
ID  - SM_1998_189_4_a5
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Modules over hereditary rings
%J Sbornik. Mathematics
%D 1998
%P 623-638
%V 189
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_4_a5/
%G en
%F SM_1998_189_4_a5
A. A. Tuganbaev. Modules over hereditary rings. Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 623-638. http://geodesic.mathdoc.fr/item/SM_1998_189_4_a5/