Modules over hereditary rings
Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 623-638 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $A$ be a hereditary Noetherian prime ring that is not right primitive. A complete description of $\pi$-injective $A$-modules is obtained. Conditions under which the classical ring of quotients of $A$ is a $\pi$-projective $A$-module are determined. A criterion for a right hereditary right Noetherian prime ring to be serial is obtained.
@article{SM_1998_189_4_a5,
     author = {A. A. Tuganbaev},
     title = {Modules over hereditary rings},
     journal = {Sbornik. Mathematics},
     pages = {623--638},
     year = {1998},
     volume = {189},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_4_a5/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Modules over hereditary rings
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 623
EP  - 638
VL  - 189
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_4_a5/
LA  - en
ID  - SM_1998_189_4_a5
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Modules over hereditary rings
%J Sbornik. Mathematics
%D 1998
%P 623-638
%V 189
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1998_189_4_a5/
%G en
%F SM_1998_189_4_a5
A. A. Tuganbaev. Modules over hereditary rings. Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 623-638. http://geodesic.mathdoc.fr/item/SM_1998_189_4_a5/

[1] Wisbauer R., Foundations of module and ring theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl

[2] Singh S., “Quasi-injective and quasi-projective modules over hereditary noetherian prime rings”, Canad. J. Math., 26:5 (1974), 1173–1185 | MR | Zbl

[3] Goodearl K. R., Ring theory. Nonsingular rings and modules, Marcel Dekker, New York, 1976 | MR | Zbl

[4] Stenström B., Rings of quotients: an introduction to methods of ring theory, Springer-Verlag, Berlin, 1975 | MR | Zbl

[5] Feis K., Algebra: koltsa, moduli i kategorii, T. 1, Mir, M., 1977

[6] Stephenson W., “Modules whose lattice of submodules is distributive”, Proc. London Math. Soc. (3), 28 (1974), 291–310 | DOI | MR | Zbl

[7] Feis K., Algebra: koltsa, moduli i kategorii, T. 2, Mir, M., 1979 | MR

[8] Lenagan T. H., “Bounded hereditary noetherian prime rings”, J. London Math. Soc. (2), 6 (1973), 241–246 | DOI | MR | Zbl