Direct and converse theorems in problems of approximation by vectors of finite degree
Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 561-601 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $A$ be a linear operator in a complex Banach space $X$ with domain $\mathfrak D(A)$ and a non-empty resolvent set. An element $g\in \mathfrak D_\infty (A):=\bigcap _{j=0,1,\dots }\mathfrak D(A^j)$ is called a vector of degree at most $\zeta (>0)$ with respect to $A$ if $\|A^jg\|_X\leqslant c(g)\zeta ^j$, $j=0,1,\dots $ . The set of vectors of degree at most $\zeta$ is denoted by $\mathfrak G_\zeta (A)$. The quantity $E_\zeta (f,A)_X=\inf _{g\in \mathfrak G_\zeta (A)}\|f-g\|_X$ is introduced and estimated in terms of the $K$-functional $K\bigl (\zeta ^{-r},f;X,\mathfrak D(A^r)\bigr ) =\inf _{g\in \mathfrak D(A^r)}\bigl (\|f-g\|_X+\zeta ^{-r}\|A^rf\|_X\bigr )$ (the direct theorem). An estimate of this $K$-functional in terms of $E_\zeta (f,A)_X$ and $\|f\|_X$ is established (the converse theorem). Using the estimates obtained, necessary and sufficient conditions for the following properties are found in terms of $E_\zeta (f,A)_X$: 1) $f\in \mathfrak D_\infty (A)$; 2) the series $e^{zA}f:=\sum _{r=0}^\infty (z^rA^rf)/(r!)$ converges in some disc; 3) the series $e^{zA}f$ converges in the entire complex plane. The growth order and the type of the entire function $e^{zA}f$ are calculated in terms of $E_\zeta (f,A)_X$.
@article{SM_1998_189_4_a3,
     author = {G. V. Radzievskii},
     title = {Direct and converse theorems in problems of approximation by vectors of finite degree},
     journal = {Sbornik. Mathematics},
     pages = {561--601},
     year = {1998},
     volume = {189},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_4_a3/}
}
TY  - JOUR
AU  - G. V. Radzievskii
TI  - Direct and converse theorems in problems of approximation by vectors of finite degree
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 561
EP  - 601
VL  - 189
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_4_a3/
LA  - en
ID  - SM_1998_189_4_a3
ER  - 
%0 Journal Article
%A G. V. Radzievskii
%T Direct and converse theorems in problems of approximation by vectors of finite degree
%J Sbornik. Mathematics
%D 1998
%P 561-601
%V 189
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1998_189_4_a3/
%G en
%F SM_1998_189_4_a3
G. V. Radzievskii. Direct and converse theorems in problems of approximation by vectors of finite degree. Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 561-601. http://geodesic.mathdoc.fr/item/SM_1998_189_4_a3/

[1] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962

[2] Radzievskii G. V., “O nailuchshikh priblizheniyakh i o skorosti skhodimosti razlozhenii po kornevym vektoram operatora”, Ukr. matem. zhurn., 49:6 (1997), 754–773 | MR

[3] Nelson E., “Analytic vectors”, Ann. of Math., 70:3 (1959), 572–615 | DOI | MR | Zbl

[4] Goodman R., “Analytic and entire vectors for representations of Lie groups”, Trans. Amer. Math. Soc., 143 (1969), 55–76 | DOI | MR | Zbl

[5] Bernshtein S. N., Sobranie sochinenii, T. I, Izd-vo AN SSSR, M., 1952

[6] Bernshtein S. N., Sobranie sochinenii, T. II, Izd-vo AN SSSR, M., 1954

[7] Brudnyi Yu. A., Krein S. G., Semenov E. M., “Interpolyatsiya lineinykh operatorov”, Itogi nauki i tekhniki. Matematicheskii analiz, 24, VINITI, M., 1986, 3–163 | MR

[8] Jackson D., Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung, Inauguraldissertation und Preischrift, Univ. Göttingen, 1911 | Zbl

[9] Stechkin S. B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 15:3 (1951), 219–242 | MR | Zbl

[10] Timan A. F., Timan M. F., “Obobschennyi modul nepreryvnosti i nailuchshie priblizheniya v srednem”, Dokl. AN SSSR, 71:1 (1950), 17–20 | MR | Zbl

[11] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[12] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[13] Andrienko V. A., “Teoremy vlozheniya dlya funktsii odnogo peremennogo”, Itogi nauki i tekhniki. Matematicheskii analiz, VINITI, M., 1971, 203–262 | MR

[14] Konyushkov A. A., “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Matem. sb., 44 (86):1 (1958), 53–84 | MR

[15] Ulyanov P. L., “Vlozhenie nekotorykh klassov funktsii $H_p^\omega$”, Izv. AN SSSR. Ser. matem., 32:3 (1968), 649–686 | MR | Zbl

[16] Ulyanov P. L., “Teoremy vlozheniya i sootnosheniya mezhdu nailuchshimi priblizheniyami (modulyami nepreryvnosti) v raznykh metrikakh”, Matem. sb., 81 (123):1 (1970), 104–131 | MR | Zbl

[17] Vilenkin N. Ya., Kombinatorika, Nauka, M., 1969 | MR | Zbl

[18] Markushevich A. I., Teoriya analiticheskikh funktsii, T. 2, Nauka, M., 1968 | Zbl

[19] Radyno Ya. V., “Prostranstvo vektorov eksponentsialnogo tipa”, Dokl. AN BSSR, 27:9 (1983), 791–793 | MR | Zbl

[20] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962

[21] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summy, ryadov i proizvedenii, Nauka, M., 1971

[22] Sedletskii A. M., “O ravnomernoi skhodimosti negarmonicheskikh ryadov Fure”, Tr. MIAN, 200, Nauka, M., 1991, 299–309

[23] Zigmund A., Trigonometricheskie ryady, T. I, Mir, M., 1965 | MR

[24] Levinson N., Cap and density theorems, Amer. Math. Soc., New York, 1940 | MR | Zbl

[25] Sedletskii A. M., “Biortogonalnye razlozheniya funktsii v ryady eksponent na intervalakh veschestvennoi osi”, UMN, 37:5 (1982), 51–95 | MR