Direct and converse theorems in problems of approximation by vectors of finite degree
Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 561-601

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a linear operator in a complex Banach space $X$ with domain $\mathfrak D(A)$ and a non-empty resolvent set. An element $g\in \mathfrak D_\infty (A):=\bigcap _{j=0,1,\dots }\mathfrak D(A^j)$ is called a vector of degree at most $\zeta (>0)$ with respect to $A$ if $\|A^jg\|_X\leqslant c(g)\zeta ^j$, $j=0,1,\dots $ . The set of vectors of degree at most $\zeta$ is denoted by $\mathfrak G_\zeta (A)$. The quantity $E_\zeta (f,A)_X=\inf _{g\in \mathfrak G_\zeta (A)}\|f-g\|_X$ is introduced and estimated in terms of the $K$-functional $K\bigl (\zeta ^{-r},f;X,\mathfrak D(A^r)\bigr ) =\inf _{g\in \mathfrak D(A^r)}\bigl (\|f-g\|_X+\zeta ^{-r}\|A^rf\|_X\bigr )$ (the direct theorem). An estimate of this $K$-functional in terms of $E_\zeta (f,A)_X$ and $\|f\|_X$ is established (the converse theorem). Using the estimates obtained, necessary and sufficient conditions for the following properties are found in terms of $E_\zeta (f,A)_X$: 1) $f\in \mathfrak D_\infty (A)$; 2) the series $e^{zA}f:=\sum _{r=0}^\infty (z^rA^rf)/(r!)$ converges in some disc; 3) the series $e^{zA}f$ converges in the entire complex plane. The growth order and the type of the entire function $e^{zA}f$ are calculated in terms of $E_\zeta (f,A)_X$.
@article{SM_1998_189_4_a3,
     author = {G. V. Radzievskii},
     title = {Direct and converse theorems in problems of approximation by vectors of finite degree},
     journal = {Sbornik. Mathematics},
     pages = {561--601},
     publisher = {mathdoc},
     volume = {189},
     number = {4},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_4_a3/}
}
TY  - JOUR
AU  - G. V. Radzievskii
TI  - Direct and converse theorems in problems of approximation by vectors of finite degree
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 561
EP  - 601
VL  - 189
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_4_a3/
LA  - en
ID  - SM_1998_189_4_a3
ER  - 
%0 Journal Article
%A G. V. Radzievskii
%T Direct and converse theorems in problems of approximation by vectors of finite degree
%J Sbornik. Mathematics
%D 1998
%P 561-601
%V 189
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_4_a3/
%G en
%F SM_1998_189_4_a3
G. V. Radzievskii. Direct and converse theorems in problems of approximation by vectors of finite degree. Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 561-601. http://geodesic.mathdoc.fr/item/SM_1998_189_4_a3/