On the homology of a~free nilpotent group of class~2
Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 527-560
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a free nilpotent group of class 2, and let ${\mathscr G}$ be a free nilpotent Lie ring of class 2 with the same number of free generators. For $G$ a free resolution is constructed which as a graded ${\mathbb Z}G$-module is isomorphic to ${\mathbb Z}G\otimes \Lambda ({\mathscr G})$, where ${\mathbb Z}G$ is the group ring of the group $G$ and $\Lambda ({\mathscr G})$ is the exterior algebra of the ring ${\mathscr G}$. As a consequence of the basic construction an isomorphism $H_nG\cong H_n{\mathscr G}$
of integral homology is derived.
@article{SM_1998_189_4_a2,
author = {Yu. V. Kuz'min and Yu. S. Semenov},
title = {On the homology of a~free nilpotent group of class~2},
journal = {Sbornik. Mathematics},
pages = {527--560},
publisher = {mathdoc},
volume = {189},
number = {4},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_4_a2/}
}
Yu. V. Kuz'min; Yu. S. Semenov. On the homology of a~free nilpotent group of class~2. Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 527-560. http://geodesic.mathdoc.fr/item/SM_1998_189_4_a2/