On the homology of a free nilpotent group of class 2
Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 527-560 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G$ be a free nilpotent group of class 2, and let ${\mathscr G}$ be a free nilpotent Lie ring of class 2 with the same number of free generators. For $G$ a free resolution is constructed which as a graded ${\mathbb Z}G$-module is isomorphic to ${\mathbb Z}G\otimes \Lambda ({\mathscr G})$, where ${\mathbb Z}G$ is the group ring of the group $G$ and $\Lambda ({\mathscr G})$ is the exterior algebra of the ring ${\mathscr G}$. As a consequence of the basic construction an isomorphism $H_nG\cong H_n{\mathscr G}$ of integral homology is derived.
@article{SM_1998_189_4_a2,
     author = {Yu. V. Kuz'min and Yu. S. Semenov},
     title = {On the homology of a~free nilpotent group of class~2},
     journal = {Sbornik. Mathematics},
     pages = {527--560},
     year = {1998},
     volume = {189},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_4_a2/}
}
TY  - JOUR
AU  - Yu. V. Kuz'min
AU  - Yu. S. Semenov
TI  - On the homology of a free nilpotent group of class 2
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 527
EP  - 560
VL  - 189
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_4_a2/
LA  - en
ID  - SM_1998_189_4_a2
ER  - 
%0 Journal Article
%A Yu. V. Kuz'min
%A Yu. S. Semenov
%T On the homology of a free nilpotent group of class 2
%J Sbornik. Mathematics
%D 1998
%P 527-560
%V 189
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1998_189_4_a2/
%G en
%F SM_1998_189_4_a2
Yu. V. Kuz'min; Yu. S. Semenov. On the homology of a free nilpotent group of class 2. Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 527-560. http://geodesic.mathdoc.fr/item/SM_1998_189_4_a2/

[1] Kuzmin Yu. V., “Homology theory of free abelianized extensions”, Comm. Algebra, 16 (1988), 2447–2533 | DOI | MR | Zbl

[2] Kuzmin Yu. V., “O nekotorykh svoistvakh svobodnykh abelevykh rasshirenii”, Matem. sb., 180:6 (1989), 850–862 | MR

[3] Kovach L. G., Kuzmin Yu. V., Shter R., “Gomologiya svobodnykh abelevykh rasshirenii”, Matem. sb., 182:4 (1991), 526–542 | MR | Zbl

[4] Kuzmin Yu. V., “O gomologiyakh svobodnoi razreshimoi gruppy”, Matem. zametki, 54:6 (1993), 56–65 | MR | Zbl

[5] Kuzmin Yu. V., “O svyazi mezhdu kogomologiyami grupp i algebr Li”, UMN, 37:4 (1982), 161–162 | MR | Zbl

[6] Lambe L. A., Priddy S. B., “Cohomology of nilmanifolds and torsion free nilpotent groups”, Trans. Amer. Math. Soc., 273 (1982), 39–55 | DOI | MR | Zbl

[7] Huebschmann J., “Perturbation theory and free resolutions for nilpotent groups of class $2$”, J. Algebra, 126:2 (1989), 348–399 | DOI | MR | Zbl

[8] Lambe L. A., “Cohomology of principal G-bundles over a torus when $H^*(BG;R)$ is polynomial”, Bull. Soc. Math. Belg. Ser. A, 38 (1986), 247–264 | MR | Zbl

[9] Sigg St., “Laplacian and homology of free $2$-step nilpotent Lie algebras”, J. Algebra, 185:1 (1996), 144–161 | DOI | MR | Zbl

[10] André M., “Le $d_2$ de la suite spectrale en cohomologie des groupes”, C. R. Acad. Sci. Paris. Sér. I Math., 260 (1965), 2669–2671 | MR | Zbl

[11] Kuzmin Yu. V., “O differentsialakh spektralnoi posledovatelnosti gruppovogo rasshireniya”, Matem. sb., 133:1 (1987), 49–63 | Zbl