Asymptotic behaviour of the~eigenvalues of the~Dirichlet problem in a~domain with a~narrow slit
Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 503-526

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet problem in a two-dimensional domain with a narrow slit is studied. The width of the slit is a small parameter. The complete asymptotic expansion for the eigenvalue of the perturbed problem converging to a simple eigenvalue of the limiting problem is constructed by means of the method of matched asymptotic expansions. It is shown that the regular perturbation theory can formally be applied in a natural way up to terms of order $\varepsilon ^2$. However, the result obtained in that way is false. The correct result can be obtained only by means of an inner asymptotic expansion.
@article{SM_1998_189_4_a1,
     author = {R. R. Gadyl'shin and A. M. Il'in},
     title = {Asymptotic behaviour of the~eigenvalues of {the~Dirichlet} problem in a~domain with a~narrow slit},
     journal = {Sbornik. Mathematics},
     pages = {503--526},
     publisher = {mathdoc},
     volume = {189},
     number = {4},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_4_a1/}
}
TY  - JOUR
AU  - R. R. Gadyl'shin
AU  - A. M. Il'in
TI  - Asymptotic behaviour of the~eigenvalues of the~Dirichlet problem in a~domain with a~narrow slit
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 503
EP  - 526
VL  - 189
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_4_a1/
LA  - en
ID  - SM_1998_189_4_a1
ER  - 
%0 Journal Article
%A R. R. Gadyl'shin
%A A. M. Il'in
%T Asymptotic behaviour of the~eigenvalues of the~Dirichlet problem in a~domain with a~narrow slit
%J Sbornik. Mathematics
%D 1998
%P 503-526
%V 189
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_4_a1/
%G en
%F SM_1998_189_4_a1
R. R. Gadyl'shin; A. M. Il'in. Asymptotic behaviour of the~eigenvalues of the~Dirichlet problem in a~domain with a~narrow slit. Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 503-526. http://geodesic.mathdoc.fr/item/SM_1998_189_4_a1/