Asymptotic behaviour of the~eigenvalues of the~Dirichlet problem in a~domain with a~narrow slit
Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 503-526
Voir la notice de l'article provenant de la source Math-Net.Ru
The Dirichlet problem in a two-dimensional domain with a narrow slit is studied. The width of the slit is a small parameter. The complete asymptotic expansion for the eigenvalue of the perturbed problem converging to a simple eigenvalue of the limiting problem is constructed by means of the method of matched asymptotic expansions. It is shown that the regular perturbation theory can formally be applied in a natural way up to terms of order $\varepsilon ^2$. However, the result obtained in that way is false. The correct result can be obtained only by means of an inner asymptotic expansion.
@article{SM_1998_189_4_a1,
author = {R. R. Gadyl'shin and A. M. Il'in},
title = {Asymptotic behaviour of the~eigenvalues of {the~Dirichlet} problem in a~domain with a~narrow slit},
journal = {Sbornik. Mathematics},
pages = {503--526},
publisher = {mathdoc},
volume = {189},
number = {4},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_4_a1/}
}
TY - JOUR AU - R. R. Gadyl'shin AU - A. M. Il'in TI - Asymptotic behaviour of the~eigenvalues of the~Dirichlet problem in a~domain with a~narrow slit JO - Sbornik. Mathematics PY - 1998 SP - 503 EP - 526 VL - 189 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1998_189_4_a1/ LA - en ID - SM_1998_189_4_a1 ER -
R. R. Gadyl'shin; A. M. Il'in. Asymptotic behaviour of the~eigenvalues of the~Dirichlet problem in a~domain with a~narrow slit. Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 503-526. http://geodesic.mathdoc.fr/item/SM_1998_189_4_a1/