@article{SM_1998_189_4_a0,
author = {A. Boivin and P. V. Paramonov},
title = {Approximation by meromorphic and entire solutions of elliptic equations in {Banach} spaces of distributions},
journal = {Sbornik. Mathematics},
pages = {481--502},
year = {1998},
volume = {189},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_4_a0/}
}
TY - JOUR AU - A. Boivin AU - P. V. Paramonov TI - Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions JO - Sbornik. Mathematics PY - 1998 SP - 481 EP - 502 VL - 189 IS - 4 UR - http://geodesic.mathdoc.fr/item/SM_1998_189_4_a0/ LA - en ID - SM_1998_189_4_a0 ER -
A. Boivin; P. V. Paramonov. Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions. Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 481-502. http://geodesic.mathdoc.fr/item/SM_1998_189_4_a0/
[1] Runge C., “Zur theorie der eindeutigen analytischen funktionen”, Acta Math., 6 (1885), 228–244 | MR
[2] Roth A., “Approximationseigenschaften und strahlengrenzwerte meromorpher und ganzer funktionen”, Comment. Math. Helv., 11 (1938), 77–125 | DOI | MR | Zbl
[3] Arakelyan N. U., “Ravnomernaya approksimatsiya na zamknutykh mnozhestvakh tselymi funktsiyami”, Izv. AN SSSR. Ser. matem., 28:5 (1964), 1187–1206 | MR | Zbl
[4] Mergelyan S. N., “Ravnomernoe priblizhenie funktsii kompleksnogo peremennogo”, UMN, 7:2 (48) (1952), 31–122 | MR | Zbl
[5] O'Farrell A. G., “T-invariance”, Proc. Roy. Irish Acad. Sect. A, 92:2 (1992), 185–203 | MR | Zbl
[6] Paramonov P. V., Verdera J., “Approximation by solutions of elliptic equations on closed subsets of Euclidean space”, Math. Scand., 74 (1994), 249–259 | MR | Zbl
[7] Dufresnoy A., Gauthier P. M., Ow W. H., “Uniform approximation on closed sets by solutions of elliptic partial differential equations”, Complex Variables Theory Appl., 6 (1986), 235–247 | MR
[8] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR
[9] Gardiner S. J., Harmonic Approximation, London Mathematical Society Lecture Notes Series, 221, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[10] Lax P., “A stability theorem for abstract differential equations and its applications to the study of local behaviour of solutions of elliptic equations”, Comm. Pure Appl. Math., 9 (1956), 747–766 | DOI | MR | Zbl
[11] Malgrange B., “Existence et approximation des solutions des equations aux dérivées partielles et des equations de convolution”, Ann. Inst. Fourier (Grenoble), 6 (1955–56), 271–355 | MR
[12] Fariña J. C., “Lipschitz approximation on closed sets”, J. Anal. Math., 57 (1991), 152–171 | MR | Zbl
[13] Bonilla A., Fariña J. C., “Meromorphic and holomorphic approximation in $C^m$-norms”, J. Math. Anal. Appl., 181 (1994), 132–149 | DOI | MR | Zbl
[14] Bonilla A., Fariña J. C., “Meromorphic and entire approximation in BMO-norm”, J. Approx. Theory, 76 (1994), 203–218 | DOI | MR | Zbl
[15] Bagby T., Gauthier P. M., “Uniform approximation by global harmonic functions”, Approximation by Solutions of Partial Differential Equations, NATO ASI Series, Kluwer Acad. Publ., Dordrecht, 1992, 15–26 | MR
[16] Verdera J., “Removability, capacity and approximation”, Complex Potential Theory, NATO ASI Series, Kluwer Acad. Publ., Dordrecht, 1993, 419–473 | MR
[17] Hörmander L., Linear Partial Differential Operator, Springer-Verlag, Berlin, 1963 | MR
[18] Husain T., The Open Mapping and Closed Graph Theorems in Topological Vector Spaces, Oxford Univ. Press, London, 1965 | MR | Zbl
[19] Reed M., Simon B., Methods of Modern Mathematical Physics, V. I, Academic Press, New York, 1972 | MR
[20] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR
[21] Verdera J., “$C^m$ approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55 (1987), 157–187 | DOI | MR | Zbl
[22] Keldysh M. V., Lavrentev M. A., “Sur une probleme de M. Carleman”, Dokl. AN SSSR, 23:8 (1939), 746–748 | MR | Zbl
[23] Gaier D., Lektsii po teorii approksimatsii v kompleksnoi oblasti, Mir, M., 1986 | MR | Zbl
[24] Nersesyan A. A., “Ravnomernaya i kasatelnaya approksimatsiya meromorfnymi funktsiyami”, Izv. AN Arm. SSR. Ser. matem., 7 (1972), 405–412 | MR
[25] Paramonov P. V., “O garmonicheskikh approksimatsiyakh v $C^1$-norme”, Matem. sb., 181:10 (1990), 1341–1365 | MR
[26] Paramonov P. V., “$C^m$-priblizheniya garmonicheskimi polinomami na kompaktnykh mnozhestvakh v $\mathbb R^n$”, Matem. sb., 184:2 (1993), 105–128 | MR | Zbl
[27] Fedorovskii K. Yu., “O ravnomernykh priblizheniyakh funktsii $n$-analiticheskimi polinomami na spryamlyaemykh konturakh v ${\mathbb C}$”, Matem. zametki, 59:4 (1996), 604–610 | MR | Zbl
[28] O'Farrell A. G., “The order of a symmetric concrete space”, Proc. Roy. Irish Acad. Sect. A, 88:1 (1988), 39–48 | MR | Zbl
[29] Boivin A., Verdera J., “Approximation par fonctions holomorphes dans les espaces $L^p$, $\operatorname{Lip}_\alpha$ et BMO”, Indiana Univ. Math. J., 40 (1991), 393–418 | DOI | MR | Zbl
[30] O'Farrell A. G., “Rational approximation in Lipschitz norms, II”, Proc. Roy. Irish Acad. Sect. A, 79:11 (1979), 103–114 | MR | Zbl