Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions
Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 481-502 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a homogeneous elliptic partial differential operator $L$ with constant coefficients and a class of functions (jet-distributions) defined on a closed, not necessarily compact, subset of $\mathbb R^n$ and belonging locally to a Banach space $V$, the approximation in the norm of $V$ of functions in this class by entire and meromorphic solutions of the equation $Lu=0$ is considered. Theorems of Runge, Mergelyan, Roth, and Arakelyan type are established for a wide class of Banach spaces $V$ and operators $L$ they encompass most of the previously considered generalizations of these theorems but also include new results.
@article{SM_1998_189_4_a0,
     author = {A. Boivin and P. V. Paramonov},
     title = {Approximation by meromorphic and entire solutions of elliptic equations in {Banach} spaces of distributions},
     journal = {Sbornik. Mathematics},
     pages = {481--502},
     year = {1998},
     volume = {189},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_4_a0/}
}
TY  - JOUR
AU  - A. Boivin
AU  - P. V. Paramonov
TI  - Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 481
EP  - 502
VL  - 189
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_4_a0/
LA  - en
ID  - SM_1998_189_4_a0
ER  - 
%0 Journal Article
%A A. Boivin
%A P. V. Paramonov
%T Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions
%J Sbornik. Mathematics
%D 1998
%P 481-502
%V 189
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1998_189_4_a0/
%G en
%F SM_1998_189_4_a0
A. Boivin; P. V. Paramonov. Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions. Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 481-502. http://geodesic.mathdoc.fr/item/SM_1998_189_4_a0/

[1] Runge C., “Zur theorie der eindeutigen analytischen funktionen”, Acta Math., 6 (1885), 228–244 | MR

[2] Roth A., “Approximationseigenschaften und strahlengrenzwerte meromorpher und ganzer funktionen”, Comment. Math. Helv., 11 (1938), 77–125 | DOI | MR | Zbl

[3] Arakelyan N. U., “Ravnomernaya approksimatsiya na zamknutykh mnozhestvakh tselymi funktsiyami”, Izv. AN SSSR. Ser. matem., 28:5 (1964), 1187–1206 | MR | Zbl

[4] Mergelyan S. N., “Ravnomernoe priblizhenie funktsii kompleksnogo peremennogo”, UMN, 7:2 (48) (1952), 31–122 | MR | Zbl

[5] O'Farrell A. G., “T-invariance”, Proc. Roy. Irish Acad. Sect. A, 92:2 (1992), 185–203 | MR | Zbl

[6] Paramonov P. V., Verdera J., “Approximation by solutions of elliptic equations on closed subsets of Euclidean space”, Math. Scand., 74 (1994), 249–259 | MR | Zbl

[7] Dufresnoy A., Gauthier P. M., Ow W. H., “Uniform approximation on closed sets by solutions of elliptic partial differential equations”, Complex Variables Theory Appl., 6 (1986), 235–247 | MR

[8] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR

[9] Gardiner S. J., Harmonic Approximation, London Mathematical Society Lecture Notes Series, 221, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[10] Lax P., “A stability theorem for abstract differential equations and its applications to the study of local behaviour of solutions of elliptic equations”, Comm. Pure Appl. Math., 9 (1956), 747–766 | DOI | MR | Zbl

[11] Malgrange B., “Existence et approximation des solutions des equations aux dérivées partielles et des equations de convolution”, Ann. Inst. Fourier (Grenoble), 6 (1955–56), 271–355 | MR

[12] Fariña J. C., “Lipschitz approximation on closed sets”, J. Anal. Math., 57 (1991), 152–171 | MR | Zbl

[13] Bonilla A., Fariña J. C., “Meromorphic and holomorphic approximation in $C^m$-norms”, J. Math. Anal. Appl., 181 (1994), 132–149 | DOI | MR | Zbl

[14] Bonilla A., Fariña J. C., “Meromorphic and entire approximation in BMO-norm”, J. Approx. Theory, 76 (1994), 203–218 | DOI | MR | Zbl

[15] Bagby T., Gauthier P. M., “Uniform approximation by global harmonic functions”, Approximation by Solutions of Partial Differential Equations, NATO ASI Series, Kluwer Acad. Publ., Dordrecht, 1992, 15–26 | MR

[16] Verdera J., “Removability, capacity and approximation”, Complex Potential Theory, NATO ASI Series, Kluwer Acad. Publ., Dordrecht, 1993, 419–473 | MR

[17] Hörmander L., Linear Partial Differential Operator, Springer-Verlag, Berlin, 1963 | MR

[18] Husain T., The Open Mapping and Closed Graph Theorems in Topological Vector Spaces, Oxford Univ. Press, London, 1965 | MR | Zbl

[19] Reed M., Simon B., Methods of Modern Mathematical Physics, V. I, Academic Press, New York, 1972 | MR

[20] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[21] Verdera J., “$C^m$ approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55 (1987), 157–187 | DOI | MR | Zbl

[22] Keldysh M. V., Lavrentev M. A., “Sur une probleme de M. Carleman”, Dokl. AN SSSR, 23:8 (1939), 746–748 | MR | Zbl

[23] Gaier D., Lektsii po teorii approksimatsii v kompleksnoi oblasti, Mir, M., 1986 | MR | Zbl

[24] Nersesyan A. A., “Ravnomernaya i kasatelnaya approksimatsiya meromorfnymi funktsiyami”, Izv. AN Arm. SSR. Ser. matem., 7 (1972), 405–412 | MR

[25] Paramonov P. V., “O garmonicheskikh approksimatsiyakh v $C^1$-norme”, Matem. sb., 181:10 (1990), 1341–1365 | MR

[26] Paramonov P. V., “$C^m$-priblizheniya garmonicheskimi polinomami na kompaktnykh mnozhestvakh v $\mathbb R^n$”, Matem. sb., 184:2 (1993), 105–128 | MR | Zbl

[27] Fedorovskii K. Yu., “O ravnomernykh priblizheniyakh funktsii $n$-analiticheskimi polinomami na spryamlyaemykh konturakh v ${\mathbb C}$”, Matem. zametki, 59:4 (1996), 604–610 | MR | Zbl

[28] O'Farrell A. G., “The order of a symmetric concrete space”, Proc. Roy. Irish Acad. Sect. A, 88:1 (1988), 39–48 | MR | Zbl

[29] Boivin A., Verdera J., “Approximation par fonctions holomorphes dans les espaces $L^p$, $\operatorname{Lip}_\alpha$ et BMO”, Indiana Univ. Math. J., 40 (1991), 393–418 | DOI | MR | Zbl

[30] O'Farrell A. G., “Rational approximation in Lipschitz norms, II”, Proc. Roy. Irish Acad. Sect. A, 79:11 (1979), 103–114 | MR | Zbl