Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions
Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 481-502
Voir la notice de l'article provenant de la source Math-Net.Ru
For a homogeneous elliptic partial differential operator $L$ with constant coefficients and a class of functions (jet-distributions) defined on a closed, not necessarily compact, subset of $\mathbb R^n$ and belonging locally to a Banach space $V$, the approximation in the norm of $V$ of functions in this class by entire and meromorphic solutions of the equation $Lu=0$ is considered. Theorems of Runge, Mergelyan, Roth, and Arakelyan type are established for a wide class of Banach spaces $V$ and operators $L$ they encompass most of the previously considered generalizations of these theorems but also include new results.
@article{SM_1998_189_4_a0,
author = {A. Boivin and P. V. Paramonov},
title = {Approximation by meromorphic and entire solutions of elliptic equations in {Banach} spaces of distributions},
journal = {Sbornik. Mathematics},
pages = {481--502},
publisher = {mathdoc},
volume = {189},
number = {4},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_4_a0/}
}
TY - JOUR AU - A. Boivin AU - P. V. Paramonov TI - Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions JO - Sbornik. Mathematics PY - 1998 SP - 481 EP - 502 VL - 189 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1998_189_4_a0/ LA - en ID - SM_1998_189_4_a0 ER -
%0 Journal Article %A A. Boivin %A P. V. Paramonov %T Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions %J Sbornik. Mathematics %D 1998 %P 481-502 %V 189 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1998_189_4_a0/ %G en %F SM_1998_189_4_a0
A. Boivin; P. V. Paramonov. Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions. Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 481-502. http://geodesic.mathdoc.fr/item/SM_1998_189_4_a0/