Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions
Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 481-502

Voir la notice de l'article provenant de la source Math-Net.Ru

For a homogeneous elliptic partial differential operator $L$ with constant coefficients and a class of functions (jet-distributions) defined on a closed, not necessarily compact, subset of $\mathbb R^n$ and belonging locally to a Banach space $V$, the approximation in the norm of $V$ of functions in this class by entire and meromorphic solutions of the equation $Lu=0$ is considered. Theorems of Runge, Mergelyan, Roth, and Arakelyan type are established for a wide class of Banach spaces $V$ and operators $L$ they encompass most of the previously considered generalizations of these theorems but also include new results.
@article{SM_1998_189_4_a0,
     author = {A. Boivin and P. V. Paramonov},
     title = {Approximation by meromorphic and entire solutions of elliptic equations in {Banach} spaces of distributions},
     journal = {Sbornik. Mathematics},
     pages = {481--502},
     publisher = {mathdoc},
     volume = {189},
     number = {4},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_4_a0/}
}
TY  - JOUR
AU  - A. Boivin
AU  - P. V. Paramonov
TI  - Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 481
EP  - 502
VL  - 189
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_4_a0/
LA  - en
ID  - SM_1998_189_4_a0
ER  - 
%0 Journal Article
%A A. Boivin
%A P. V. Paramonov
%T Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions
%J Sbornik. Mathematics
%D 1998
%P 481-502
%V 189
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_4_a0/
%G en
%F SM_1998_189_4_a0
A. Boivin; P. V. Paramonov. Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions. Sbornik. Mathematics, Tome 189 (1998) no. 4, pp. 481-502. http://geodesic.mathdoc.fr/item/SM_1998_189_4_a0/