Fixed-point theorems for a controlled withdrawal of the convexity of the values of a set-valued map
Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 461-480 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The question of the extent of the possible weakening of the convexity condition for the values of set-valued maps in the classical fixed-point theorems of Kakutani, Bohnenblust-Karlin, and Gliksberg is discussed. For an answer, one associates with each closed subset $P$ of a Banach space a numerical function $\alpha_P\colon(0,\infty)\to[0,\infty)$, which is called the function of non-convexity of $P$. The closer $\alpha_P$ is to zero, the 'more convex' is $P$. The equality $\alpha_P\equiv 0$ is equivalent to the convexity of $P$. Results on selections, approximations, and fixed points for set-valued maps $F$ of finite- and infinite-dimensional paracompact sets are established in which the equality $\alpha_{F(x)}\equiv 0$ is replaced by conditions of the kind: "$\alpha_{F(x)}$ is less than 1". Several formalizations of the last condition are compared and the topological stability of constraints of this type is shown.
@article{SM_1998_189_3_a6,
     author = {P. V. Semenov},
     title = {Fixed-point theorems for a~controlled withdrawal of the convexity of the values of a~set-valued map},
     journal = {Sbornik. Mathematics},
     pages = {461--480},
     year = {1998},
     volume = {189},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_3_a6/}
}
TY  - JOUR
AU  - P. V. Semenov
TI  - Fixed-point theorems for a controlled withdrawal of the convexity of the values of a set-valued map
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 461
EP  - 480
VL  - 189
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_3_a6/
LA  - en
ID  - SM_1998_189_3_a6
ER  - 
%0 Journal Article
%A P. V. Semenov
%T Fixed-point theorems for a controlled withdrawal of the convexity of the values of a set-valued map
%J Sbornik. Mathematics
%D 1998
%P 461-480
%V 189
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1998_189_3_a6/
%G en
%F SM_1998_189_3_a6
P. V. Semenov. Fixed-point theorems for a controlled withdrawal of the convexity of the values of a set-valued map. Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 461-480. http://geodesic.mathdoc.fr/item/SM_1998_189_3_a6/

[1] Schauder J., “Der Fixpunktsatz in Funktionalraumen”, Studia Math., 2 (1930), 171–180 | Zbl

[2] Kakutani S., “A generalization of Brouwer's fixed point theorem”, Duke Math., 8 (1941), 457–459 | DOI | MR | Zbl

[3] Bohnenblust H., Karlin S., “On a theorem of Ville. Contribution to the theory of games”, Ann. of Math. Stud., 1950, 155–160 | MR

[4] Gliksberg I., “A further generalization of the Kakutani fixed point theorem”, Proc. Amer. Math. Soc., 3 (1952), 170–174 | DOI | MR

[5] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, UMN, 35:1 (1980), 59–126 | MR | Zbl

[6] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Mnogoznachnye otobrazheniya”, Itogi nauki i tekhniki. Matematicheskii analiz, 19, VINITI, M., 1982, 127–231 | MR

[7] Gorniewcz L., Granas A., Kryszewsky W., “On the homotopy method in the fixed point index theory of multivalued mappings of compact absolute neighborhood retracts”, J. Math. Anal. Appl., 161 (1991), 457–473 | DOI | MR

[8] Gutev V., “A fixed-point theorem for $UV^n$ usco maps”, Proc. Amer. Math. Soc., 124 (1996), 945–952 | DOI | MR | Zbl

[9] Michael E., “Paraconvex sets”, Scand. Math., 7 (1959), 372–376 | MR

[10] Repovs D., Semenov P., “On paraconvexity of graphs of continuous functions”, Set-Valued Anal., 3 (1995), 23–32 | DOI | MR | Zbl

[11] Repovs D., Semenov P., “On functions of nonconvexity for graphs of continuous functions”, J. Math. Anal. Appl., 196 (1995), 1021–1029 | DOI | MR | Zbl

[12] Semenov P. V., “Funktsionalno paravypuklye mnozhestva”, Matem. zametki, 54:6 (1993), 74–81 | Zbl

[13] Semenov P. V., “O paravypuklosti zvezdnopodobnykh mnozhestv”, Sib. matem. zhurn., 37:2 (1996), 399–405 | MR | Zbl

[14] Gelman B. D., “Obobschenie teoremy Kakutani o nepodvizhnoi tochke dlya mnogoznachnykh otobrazhenii”, DAN SSSR, 209:1 (1973), 22–24 | MR

[15] Gelman B. D., “O nekotorykh klassakh sechenii mnogoznachnykh otobrazhenii”, Primenenie topologii v sovremennom analize, Izd-vo VGU, Voronezh, 1985, 42–62 | MR

[16] Aubin J.-P., Cellina A., Differential inclusions. Set-valued maps and viability theory, Grundlehren der Math. Wiss., 264, Springer-Verlag, Berlin, 1984 | MR | Zbl

[17] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[18] Michael E., “Continuous selections. I; II”, Ann. of Math., 63:2 (1956), 361–382 ; 64:3, 562–580 | DOI | MR | Zbl | DOI | MR | Zbl

[19] Reich S., “Some problems and results in fixed points theory”, Contemp. Math., 21 (1983), 179–187 | MR | Zbl

[20] Daffer P., Kaneko H., “Fixed points of generalized contractive multivalued mappings”, J. Math. Anal. Appl., 192 (1995), 655–666 | DOI | MR | Zbl

[21] Borsuk K., Teoriya retraktov, Mir, M., 1971 | MR

[22] Michael E., “Convex structures and continuous selections”, Canad. J. Math., 11 (1959), 556–575 | MR | Zbl

[23] Choban M. M., “Mnogoznachnye otobrazheniya i borelevskie mnozhestva”, Tr. MMO, 22, URSS, M., 1970, 229–250 | MR | Zbl

[24] Garkavi A. L., “Nailuchshie vozmozhnye seti i nailuchshee vozmozhnoe razbienie mnozhestv v lineinom normirovannom prostranstve”, Izv. AN SSSR. Ser. matem., 26 (1962), 87–106 | MR

[25] Schepin E. V., Brodskii N. B., “Selektsii filtrovannykh mnogoznachnykh otobrazhenii”, Trudy MIRAN, 212, 1996, 220–240 | MR | Zbl