Parametric oscillations of a~singularly perturbed telegraph equation with a~pendulum non-linearity
Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 383-397
Voir la notice de l'article provenant de la source Math-Net.Ru
The solution of the problem in the title is reduced to an analysis of the question of the number of and stability of equilibrium states of the quasi-normal form of the boundary-value problem under consideration. A mechanism is revealed for the origin of its so-called simple equilibrium states. It is shown that as the coefficient of elasticity decreases, the number of such states increases, and that those of them with the most complex spatial structure are stable.
@article{SM_1998_189_3_a2,
author = {Yu. S. Kolesov},
title = {Parametric oscillations of a~singularly perturbed telegraph equation with a~pendulum non-linearity},
journal = {Sbornik. Mathematics},
pages = {383--397},
publisher = {mathdoc},
volume = {189},
number = {3},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_3_a2/}
}
TY - JOUR AU - Yu. S. Kolesov TI - Parametric oscillations of a~singularly perturbed telegraph equation with a~pendulum non-linearity JO - Sbornik. Mathematics PY - 1998 SP - 383 EP - 397 VL - 189 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1998_189_3_a2/ LA - en ID - SM_1998_189_3_a2 ER -
Yu. S. Kolesov. Parametric oscillations of a~singularly perturbed telegraph equation with a~pendulum non-linearity. Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 383-397. http://geodesic.mathdoc.fr/item/SM_1998_189_3_a2/