Parametric oscillations of a singularly perturbed telegraph equation with a pendulum non-linearity
Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 383-397
Cet article a éte moissonné depuis la source Math-Net.Ru
The solution of the problem in the title is reduced to an analysis of the question of the number of and stability of equilibrium states of the quasi-normal form of the boundary-value problem under consideration. A mechanism is revealed for the origin of its so-called simple equilibrium states. It is shown that as the coefficient of elasticity decreases, the number of such states increases, and that those of them with the most complex spatial structure are stable.
@article{SM_1998_189_3_a2,
author = {Yu. S. Kolesov},
title = {Parametric oscillations of a~singularly perturbed telegraph equation with a~pendulum non-linearity},
journal = {Sbornik. Mathematics},
pages = {383--397},
year = {1998},
volume = {189},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_3_a2/}
}
Yu. S. Kolesov. Parametric oscillations of a singularly perturbed telegraph equation with a pendulum non-linearity. Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 383-397. http://geodesic.mathdoc.fr/item/SM_1998_189_3_a2/
[1] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR
[2] Mitropolskii Yu. A., Moseenkov B. I., Asimptoticheskie resheniya uravnenii v chastnykh proizvodnykh, Vischa shkola, Kiev, 1976
[3] Kolesov Yu. S., “Asimptotika i ustoichivost nelineinykh parametricheskikh kolebanii singulyarno vozmuschennogo telegrafnogo uravneniya”, Matem. sb., 186:10 (1995), 57–72 | MR | Zbl
[4] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR
[5] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958