Asymptotic behaviour of the solutions of non-linear elliptic and parabolic systems in tube domains
Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 359-382 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the study of the asymptotic behaviour of solutions of weakly non-linear elliptic and parabolic systems of second-order equations. In particular, the behaviour as $t\to+\infty$ of the solution of a second-order non-linear parabolic equation satisfying a Neumann boundary condition at the boundary of a bounded Lipschitz domain is studied. The proofs are based on a result on the asymptotic equivalence of two systems of ordinary differential equations.
@article{SM_1998_189_3_a1,
     author = {Yu. V. Egorov and V. A. Kondrat'ev and O. A. Oleinik},
     title = {Asymptotic behaviour of the~solutions of non-linear elliptic and parabolic systems in tube domains},
     journal = {Sbornik. Mathematics},
     pages = {359--382},
     year = {1998},
     volume = {189},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_3_a1/}
}
TY  - JOUR
AU  - Yu. V. Egorov
AU  - V. A. Kondrat'ev
AU  - O. A. Oleinik
TI  - Asymptotic behaviour of the solutions of non-linear elliptic and parabolic systems in tube domains
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 359
EP  - 382
VL  - 189
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_3_a1/
LA  - en
ID  - SM_1998_189_3_a1
ER  - 
%0 Journal Article
%A Yu. V. Egorov
%A V. A. Kondrat'ev
%A O. A. Oleinik
%T Asymptotic behaviour of the solutions of non-linear elliptic and parabolic systems in tube domains
%J Sbornik. Mathematics
%D 1998
%P 359-382
%V 189
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1998_189_3_a1/
%G en
%F SM_1998_189_3_a1
Yu. V. Egorov; V. A. Kondrat'ev; O. A. Oleinik. Asymptotic behaviour of the solutions of non-linear elliptic and parabolic systems in tube domains. Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 359-382. http://geodesic.mathdoc.fr/item/SM_1998_189_3_a1/

[1] Kondratiev V. A., Oleinik O. A., “Some results for nonlinear elliptic equations in cylindrical domains”, Oper. Theory Adv. Appl., 57 (1992), 185–195 | MR | Zbl

[2] Kondratev V. A., Landis E. M., “O kachestvennykh svoistvakh reshenii odnogo nelineinogo uravneniya vtorogo poryadka”, Matem. sb., 135(177):3 (1988), 346–360 | MR | Zbl

[3] Ladyzhenskaya O. A., Uraltseva N. N., Solonnikov V. A., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[4] De Giorgi E., “Sulla differenziabilita e l'analiticita delle estremali degli integrali multipli regolari”, Mem. Accad. Sci. Torino (3). P. I., III, 1957, 25–43 | MR | Zbl

[5] Moser J., “A new proof of de Giorgi theorem concerning the regularity problem for elliptic differential equations”, Comm. Pure Appl. Math., 13:3 (1960), 457–468 | DOI | MR | Zbl

[6] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[7] Morrey G. B., Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, 1966 | MR | Zbl

[8] Kondratiev V., Oleinik O., “On asimptotic behaviour of solutions of some nonlinear elliptic equations in unbounded domains”, Partial differential equations and related subjects, Proceedings of the Conference dedicated to Louis Nirenberg (Longman, 1992), 163–195 | MR | Zbl