Asymptotic behaviour of the~solutions of non-linear elliptic and parabolic systems in tube domains
Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 359-382

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of the asymptotic behaviour of solutions of weakly non-linear elliptic and parabolic systems of second-order equations. In particular, the behaviour as $t\to+\infty$ of the solution of a second-order non-linear parabolic equation satisfying a Neumann boundary condition at the boundary of a bounded Lipschitz domain is studied. The proofs are based on a result on the asymptotic equivalence of two systems of ordinary differential equations.
@article{SM_1998_189_3_a1,
     author = {Yu. V. Egorov and V. A. Kondrat'ev and O. A. Oleinik},
     title = {Asymptotic behaviour of the~solutions of non-linear elliptic and parabolic systems in tube domains},
     journal = {Sbornik. Mathematics},
     pages = {359--382},
     publisher = {mathdoc},
     volume = {189},
     number = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_3_a1/}
}
TY  - JOUR
AU  - Yu. V. Egorov
AU  - V. A. Kondrat'ev
AU  - O. A. Oleinik
TI  - Asymptotic behaviour of the~solutions of non-linear elliptic and parabolic systems in tube domains
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 359
EP  - 382
VL  - 189
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_3_a1/
LA  - en
ID  - SM_1998_189_3_a1
ER  - 
%0 Journal Article
%A Yu. V. Egorov
%A V. A. Kondrat'ev
%A O. A. Oleinik
%T Asymptotic behaviour of the~solutions of non-linear elliptic and parabolic systems in tube domains
%J Sbornik. Mathematics
%D 1998
%P 359-382
%V 189
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_3_a1/
%G en
%F SM_1998_189_3_a1
Yu. V. Egorov; V. A. Kondrat'ev; O. A. Oleinik. Asymptotic behaviour of the~solutions of non-linear elliptic and parabolic systems in tube domains. Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 359-382. http://geodesic.mathdoc.fr/item/SM_1998_189_3_a1/