Asymptotic behaviour of the~solutions of non-linear elliptic and parabolic systems in tube domains
Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 359-382
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to the study of the asymptotic behaviour of solutions of weakly non-linear elliptic and parabolic systems of second-order equations. In particular, the behaviour as $t\to+\infty$ of the solution of a second-order non-linear parabolic equation satisfying a Neumann boundary condition at the boundary of a bounded Lipschitz domain is studied. The proofs are based on a result on the asymptotic equivalence of two systems of ordinary differential equations.
@article{SM_1998_189_3_a1,
author = {Yu. V. Egorov and V. A. Kondrat'ev and O. A. Oleinik},
title = {Asymptotic behaviour of the~solutions of non-linear elliptic and parabolic systems in tube domains},
journal = {Sbornik. Mathematics},
pages = {359--382},
publisher = {mathdoc},
volume = {189},
number = {3},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_3_a1/}
}
TY - JOUR AU - Yu. V. Egorov AU - V. A. Kondrat'ev AU - O. A. Oleinik TI - Asymptotic behaviour of the~solutions of non-linear elliptic and parabolic systems in tube domains JO - Sbornik. Mathematics PY - 1998 SP - 359 EP - 382 VL - 189 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1998_189_3_a1/ LA - en ID - SM_1998_189_3_a1 ER -
%0 Journal Article %A Yu. V. Egorov %A V. A. Kondrat'ev %A O. A. Oleinik %T Asymptotic behaviour of the~solutions of non-linear elliptic and parabolic systems in tube domains %J Sbornik. Mathematics %D 1998 %P 359-382 %V 189 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1998_189_3_a1/ %G en %F SM_1998_189_3_a1
Yu. V. Egorov; V. A. Kondrat'ev; O. A. Oleinik. Asymptotic behaviour of the~solutions of non-linear elliptic and parabolic systems in tube domains. Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 359-382. http://geodesic.mathdoc.fr/item/SM_1998_189_3_a1/