Canonical forms for the~invariant tensors and $A$-$B$-$C$-cohomologies of integrable Hamiltonian systems
Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 315-357
Voir la notice de l'article provenant de la source Math-Net.Ru
The canonical forms for the $(\ell ,m)$ tensors, $\ell +m\leqslant 3$, that are invariant with respect to a Liouville-integrable non-degenerate Hamiltonian system $V$ on a symplectic manifold $M^{2k}$ are derived. It is proved that the characteristic polynomial of any invariant $(1,1)$ tensor $A^\alpha _\beta$ is a perfect square; therefore its eigenvalues have even multiplicities. Any invariant metric $g_{\alpha \beta }$ is indefinite and has signature $\sigma \leqslant k$. The derived canonical forms are applied to the calculation of the $A$-$B$-$C$-cohomologies of Liouville-integrable Hamiltonian systems.
@article{SM_1998_189_3_a0,
author = {O. I. Bogoyavlenskii},
title = {Canonical forms for the~invariant tensors and $A$-$B$-$C$-cohomologies of integrable {Hamiltonian} systems},
journal = {Sbornik. Mathematics},
pages = {315--357},
publisher = {mathdoc},
volume = {189},
number = {3},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_3_a0/}
}
TY - JOUR AU - O. I. Bogoyavlenskii TI - Canonical forms for the~invariant tensors and $A$-$B$-$C$-cohomologies of integrable Hamiltonian systems JO - Sbornik. Mathematics PY - 1998 SP - 315 EP - 357 VL - 189 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1998_189_3_a0/ LA - en ID - SM_1998_189_3_a0 ER -
O. I. Bogoyavlenskii. Canonical forms for the~invariant tensors and $A$-$B$-$C$-cohomologies of integrable Hamiltonian systems. Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 315-357. http://geodesic.mathdoc.fr/item/SM_1998_189_3_a0/