Canonical forms for the invariant tensors and $A$-$B$-$C$-cohomologies of integrable Hamiltonian systems
Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 315-357 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The canonical forms for the $(\ell ,m)$ tensors, $\ell +m\leqslant 3$, that are invariant with respect to a Liouville-integrable non-degenerate Hamiltonian system $V$ on a symplectic manifold $M^{2k}$ are derived. It is proved that the characteristic polynomial of any invariant $(1,1)$ tensor $A^\alpha _\beta$ is a perfect square; therefore its eigenvalues have even multiplicities. Any invariant metric $g_{\alpha \beta }$ is indefinite and has signature $\sigma \leqslant k$. The derived canonical forms are applied to the calculation of the $A$-$B$-$C$-cohomologies of Liouville-integrable Hamiltonian systems.
@article{SM_1998_189_3_a0,
     author = {O. I. Bogoyavlenskii},
     title = {Canonical forms for the~invariant tensors and $A$-$B$-$C$-cohomologies of integrable {Hamiltonian} systems},
     journal = {Sbornik. Mathematics},
     pages = {315--357},
     year = {1998},
     volume = {189},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_3_a0/}
}
TY  - JOUR
AU  - O. I. Bogoyavlenskii
TI  - Canonical forms for the invariant tensors and $A$-$B$-$C$-cohomologies of integrable Hamiltonian systems
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 315
EP  - 357
VL  - 189
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_3_a0/
LA  - en
ID  - SM_1998_189_3_a0
ER  - 
%0 Journal Article
%A O. I. Bogoyavlenskii
%T Canonical forms for the invariant tensors and $A$-$B$-$C$-cohomologies of integrable Hamiltonian systems
%J Sbornik. Mathematics
%D 1998
%P 315-357
%V 189
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1998_189_3_a0/
%G en
%F SM_1998_189_3_a0
O. I. Bogoyavlenskii. Canonical forms for the invariant tensors and $A$-$B$-$C$-cohomologies of integrable Hamiltonian systems. Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 315-357. http://geodesic.mathdoc.fr/item/SM_1998_189_3_a0/

[1] Bogoyavlenskij O. I., “Invariant incompatible Poisson structures”, Proc. Roy. Soc. London Ser. A, 450 (1995), 723–730 | DOI | Zbl

[2] Bogoyavlenskij O. I., “A cohomology of dynamical systems”, Compt. Rend. Mathem. Canada, 17 (1995), 253–258 | MR | Zbl

[3] Bogoyavlenskij O. I., “Theory of tensor invariants of integrable Hamiltonian systems. I: Incompatible Poisson structures”, Comm. Math. Phys., 1996, no. 3, 529–586 | DOI | MR | Zbl

[4] Bogoyavlenskij O. I., “The $A$-$B$-$C$-cohomologies for dynamical systems”, Compt. Rend. Mathem. Canada, 18 (1996), 199–204 | MR | Zbl

[5] Bogoyavlenskij O. I., “Theory of tensor invariants of integrable Hamiltonian systems. II: Theorem on symmetries and its applications”, Comm. Math. Phys., 184 (1997), 301–365 | DOI | MR | Zbl

[6] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[7] Liouville J., “Note sur l'integration des equations differentielles de la Dynamique”, J. Math. Pures Appl., 20 (1855), 137–138

[8] Arnold V. I., “Malye znamenateli. II: Dokazatelstvo teoremy A. N. Kolmogorova o sokhranenii uslovno-periodicheskikh dvizhenii pri malom izmenenii funktsii Gamiltona”, UMN, 18:5 (1963), 13–40 | MR | Zbl

[9] Kolmogorov A. N., “O sokhranenii uslovno-periodicheskikh dvizhenii pri malom izmenenii funktsii Gamiltona”, Dokl. AN SSSR, 98:4 (1954), 527–530 | MR | Zbl

[10] Kolmogorov A. N., “Obschaya teoriya dinamicheskikh sistem i klassicheskaya mekhanika”, Proc. Intern. Congr. Math., V. 1 (1954), North-Holland, Amsterdam, 1957, 315–333 | MR

[11] Moser J., “On invariant curves of area-preserving mappings of an annulus”, Nachr. Akad. Wiss. Göttingen Math.-Phys., 1 (1962), 1–20 | MR | Zbl

[12] Moser J., “Convergent series expansions for quasi-periodic motions”, Math. Ann., 169 (1967), 137–176 | DOI | MR

[13] Poincare H., Les metodes nouvelles de la mechanique celeste, V. 1, Gauthier-Villars, Paris, 1892 | Zbl

[14] Nijenhuis A., “$X_{n-1}$-forming sets of eigenvectors”, Proc. Konink. Nederl. Akad. Wetensch., 54 (1951), 200–212 | MR | Zbl

[15] Kobayashi S., Nomizu K., Foundations of differential geometry, Interscience Publishers, New York, 1963 | MR | Zbl

[16] Abraham R., Marsden J. E., Foundations of Mechanics, The Benjamin/Cummings Publishing, London, 1978 | MR | Zbl

[17] Kozlov V. V., Symmetries, topology and resonances in Hamiltonian mechanics, Springer-Verlag, Berlin, 1995 | MR

[18] Marsden J. E., Ratiu T. S., Introduction to mechanics and symmetry, Springer-Verlag, Berlin, 1994 | MR

[19] Magri F., “A simple model of an integrable Hamiltonian system”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl

[20] De Rham G., “Sur l'Analysis sutus des varietes a $n$ dimensions”, J. de Mathematiques, 10 (1931), 115–200 | Zbl

[21] Birkhoff G. D., Dynamical systems, Amer. Math. Soc., Providence, Rhode Island, 1966 | Zbl

[22] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Cambridge Univ. Press, Cambridge, 1995 | MR