@article{SM_1998_189_3_a0,
author = {O. I. Bogoyavlenskii},
title = {Canonical forms for the~invariant tensors and $A$-$B$-$C$-cohomologies of integrable {Hamiltonian} systems},
journal = {Sbornik. Mathematics},
pages = {315--357},
year = {1998},
volume = {189},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_3_a0/}
}
TY - JOUR AU - O. I. Bogoyavlenskii TI - Canonical forms for the invariant tensors and $A$-$B$-$C$-cohomologies of integrable Hamiltonian systems JO - Sbornik. Mathematics PY - 1998 SP - 315 EP - 357 VL - 189 IS - 3 UR - http://geodesic.mathdoc.fr/item/SM_1998_189_3_a0/ LA - en ID - SM_1998_189_3_a0 ER -
O. I. Bogoyavlenskii. Canonical forms for the invariant tensors and $A$-$B$-$C$-cohomologies of integrable Hamiltonian systems. Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 315-357. http://geodesic.mathdoc.fr/item/SM_1998_189_3_a0/
[1] Bogoyavlenskij O. I., “Invariant incompatible Poisson structures”, Proc. Roy. Soc. London Ser. A, 450 (1995), 723–730 | DOI | Zbl
[2] Bogoyavlenskij O. I., “A cohomology of dynamical systems”, Compt. Rend. Mathem. Canada, 17 (1995), 253–258 | MR | Zbl
[3] Bogoyavlenskij O. I., “Theory of tensor invariants of integrable Hamiltonian systems. I: Incompatible Poisson structures”, Comm. Math. Phys., 1996, no. 3, 529–586 | DOI | MR | Zbl
[4] Bogoyavlenskij O. I., “The $A$-$B$-$C$-cohomologies for dynamical systems”, Compt. Rend. Mathem. Canada, 18 (1996), 199–204 | MR | Zbl
[5] Bogoyavlenskij O. I., “Theory of tensor invariants of integrable Hamiltonian systems. II: Theorem on symmetries and its applications”, Comm. Math. Phys., 184 (1997), 301–365 | DOI | MR | Zbl
[6] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR
[7] Liouville J., “Note sur l'integration des equations differentielles de la Dynamique”, J. Math. Pures Appl., 20 (1855), 137–138
[8] Arnold V. I., “Malye znamenateli. II: Dokazatelstvo teoremy A. N. Kolmogorova o sokhranenii uslovno-periodicheskikh dvizhenii pri malom izmenenii funktsii Gamiltona”, UMN, 18:5 (1963), 13–40 | MR | Zbl
[9] Kolmogorov A. N., “O sokhranenii uslovno-periodicheskikh dvizhenii pri malom izmenenii funktsii Gamiltona”, Dokl. AN SSSR, 98:4 (1954), 527–530 | MR | Zbl
[10] Kolmogorov A. N., “Obschaya teoriya dinamicheskikh sistem i klassicheskaya mekhanika”, Proc. Intern. Congr. Math., V. 1 (1954), North-Holland, Amsterdam, 1957, 315–333 | MR
[11] Moser J., “On invariant curves of area-preserving mappings of an annulus”, Nachr. Akad. Wiss. Göttingen Math.-Phys., 1 (1962), 1–20 | MR | Zbl
[12] Moser J., “Convergent series expansions for quasi-periodic motions”, Math. Ann., 169 (1967), 137–176 | DOI | MR
[13] Poincare H., Les metodes nouvelles de la mechanique celeste, V. 1, Gauthier-Villars, Paris, 1892 | Zbl
[14] Nijenhuis A., “$X_{n-1}$-forming sets of eigenvectors”, Proc. Konink. Nederl. Akad. Wetensch., 54 (1951), 200–212 | MR | Zbl
[15] Kobayashi S., Nomizu K., Foundations of differential geometry, Interscience Publishers, New York, 1963 | MR | Zbl
[16] Abraham R., Marsden J. E., Foundations of Mechanics, The Benjamin/Cummings Publishing, London, 1978 | MR | Zbl
[17] Kozlov V. V., Symmetries, topology and resonances in Hamiltonian mechanics, Springer-Verlag, Berlin, 1995 | MR
[18] Marsden J. E., Ratiu T. S., Introduction to mechanics and symmetry, Springer-Verlag, Berlin, 1994 | MR
[19] Magri F., “A simple model of an integrable Hamiltonian system”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl
[20] De Rham G., “Sur l'Analysis sutus des varietes a $n$ dimensions”, J. de Mathematiques, 10 (1931), 115–200 | Zbl
[21] Birkhoff G. D., Dynamical systems, Amer. Math. Soc., Providence, Rhode Island, 1966 | Zbl
[22] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Cambridge Univ. Press, Cambridge, 1995 | MR