An example of a wild strange attractor
Sbornik. Mathematics, Tome 189 (1998) no. 2, pp. 291-314

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that in the space of $C^r$-smooth ($r\geqslant 4$) flows in $\mathbb R^n$ ($n\geqslant 4$) there exist regions filled by systems that each have an attractor (here: a completely stable chain-transitive closed invariant set) containing a non-trivial basic hyperbolic set together with its unstable manifold, which has points of non-transversal intersection with the stable manifold. A construction is given for such a wild attractor containing an equilibrium state of saddle-focus type.
@article{SM_1998_189_2_a4,
     author = {D. V. Turaev and L. P. Shilnikov},
     title = {An example of a wild strange attractor},
     journal = {Sbornik. Mathematics},
     pages = {291--314},
     publisher = {mathdoc},
     volume = {189},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_2_a4/}
}
TY  - JOUR
AU  - D. V. Turaev
AU  - L. P. Shilnikov
TI  - An example of a wild strange attractor
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 291
EP  - 314
VL  - 189
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_2_a4/
LA  - en
ID  - SM_1998_189_2_a4
ER  - 
%0 Journal Article
%A D. V. Turaev
%A L. P. Shilnikov
%T An example of a wild strange attractor
%J Sbornik. Mathematics
%D 1998
%P 291-314
%V 189
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_2_a4/
%G en
%F SM_1998_189_2_a4
D. V. Turaev; L. P. Shilnikov. An example of a wild strange attractor. Sbornik. Mathematics, Tome 189 (1998) no. 2, pp. 291-314. http://geodesic.mathdoc.fr/item/SM_1998_189_2_a4/