An example of a wild strange attractor
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 189 (1998) no. 2, pp. 291-314
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that in the space of $C^r$-smooth ($r\geqslant 4$) flows in $\mathbb R^n$ ($n\geqslant 4$) there exist regions filled by systems that each have an attractor (here: a completely stable chain-transitive closed invariant set) containing a non-trivial basic hyperbolic  set together with its unstable manifold, which has points of non-transversal intersection with the stable manifold. A construction is given for such a wild attractor containing an equilibrium state of saddle-focus type.
			
            
            
            
          
        
      @article{SM_1998_189_2_a4,
     author = {D. V. Turaev and L. P. Shilnikov},
     title = {An example of a wild strange attractor},
     journal = {Sbornik. Mathematics},
     pages = {291--314},
     publisher = {mathdoc},
     volume = {189},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_2_a4/}
}
                      
                      
                    D. V. Turaev; L. P. Shilnikov. An example of a wild strange attractor. Sbornik. Mathematics, Tome 189 (1998) no. 2, pp. 291-314. http://geodesic.mathdoc.fr/item/SM_1998_189_2_a4/
