Homogeneous supermanifolds associated with complex projective space. I
Sbornik. Mathematics, Tome 189 (1998) no. 2, pp. 265-289 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Homogeneous and evenly homogeneous complex supermanifolds of dimension $n|m$ with reduction equal to the complex projective space $\mathbb {CP}^n$ are studied. Under the assumption that $m\leqslant n$, all split supermanifolds of this type are classified and their 1-cohomology with values in the tangent sheaf (which is invariant under the projective group) is calculated.
@article{SM_1998_189_2_a3,
     author = {A. L. Onishchik and O. V. Platonova},
     title = {Homogeneous supermanifolds associated with complex projective {space.~I}},
     journal = {Sbornik. Mathematics},
     pages = {265--289},
     year = {1998},
     volume = {189},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_2_a3/}
}
TY  - JOUR
AU  - A. L. Onishchik
AU  - O. V. Platonova
TI  - Homogeneous supermanifolds associated with complex projective space. I
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 265
EP  - 289
VL  - 189
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_2_a3/
LA  - en
ID  - SM_1998_189_2_a3
ER  - 
%0 Journal Article
%A A. L. Onishchik
%A O. V. Platonova
%T Homogeneous supermanifolds associated with complex projective space. I
%J Sbornik. Mathematics
%D 1998
%P 265-289
%V 189
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1998_189_2_a3/
%G en
%F SM_1998_189_2_a3
A. L. Onishchik; O. V. Platonova. Homogeneous supermanifolds associated with complex projective space. I. Sbornik. Mathematics, Tome 189 (1998) no. 2, pp. 265-289. http://geodesic.mathdoc.fr/item/SM_1998_189_2_a3/

[1] Manin Yu. I., Kalibrovochnye polya i kompleksnaya geometriya, Nauka, M., 1984 | MR

[2] Bunegina V. A., Onishchik A. L., “Homogeneous supermanifolds associated with the complex projective line”, J. Math. Sciences, 82:4 (1996), 3503–3527 | DOI | MR | Zbl

[3] Bunegina V. A., Onishchik A. L., “Two families of flag supermanifolds”, Differential Geom. Appl., 4:4 (1994), 329–360 | DOI | MR | Zbl

[4] Platonova O. V., “Ob odnorodnykh supermnogoobraziyakh razmernosti $2\mid2$”, UMN, 50:6 (1995), 205–206 | MR | Zbl

[5] Platonova O. V., “Ob odnorodnykh supermnogoobraziyakh, svyazannykh s kompleksnym proektivnym prostranstvom”, Akt. problemy estestv. nauk. Matematika. Informatika, Yarosl. un-t, Yaroslavl, 1995, 46–47

[6] Onischik A. L., Tranzitivnye superalgebry Li vektornykh polei, Dep. v VINITI 12.06.86, No4329-B

[7] Kolář I., Michor P. W., Slovák J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993 | MR

[8] Akhiezer D. N., Lie group actions in complex analysis, Vieweg Sohn, Braunschweig, 1995 | MR | Zbl

[9] Onischik A. L., Topologiya tranzitivnykh grupp preobrazovanii, Fizmatlit, M., 1995 | MR | Zbl

[10] Snow D. M., “Spanning homogeneous vector bundles”, Comment. Math. Helv., 64:3 (1989), 395–400 | DOI | MR | Zbl

[11] Vinberg E. B., Onischik A. L., Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988 | MR

[12] Bott R., “Homogeneous vector bundles”, Ann. of Math. (2), 66 (1957), 203–248 | DOI | MR | Zbl

[13] Serov A. A., Superalgebry Li vektornykh polei na kompleksnykh flagovykh supermnogoobraziyakh, Dep. v VINITI 26.01.87, No610-B

[14] Onischik A. L., Serov A. A., “Superalgebry Li vektornykh polei na rasschepimykh flagovykh supermnogoobraziyakh”, Dokl. AN SSSR, 300 (1988), 284–287 | Zbl

[15] Onishchik A. L., About derivations and vector-valued differential forms, No 181, Inst. Math. Ruhr-Universität Bochum, 1995