Kolmogorov $\varepsilon$-entropy estimates for the~uniform attractors of non-autonomous reaction-diffusion systems
Sbornik. Mathematics, Tome 189 (1998) no. 2, pp. 235-263
Voir la notice de l'article provenant de la source Math-Net.Ru
The Kolmogorov $\varepsilon$-entropy of the uniform attractor $\mathscr A$ of a family of non-autonomous reaction-diffusion systems with external forces $g(x,t)$ is studied. The external forces $g(x,t)$ are assumed to belong to some subset $\sigma$ of
$C({\mathbb R};H)$, where $H=(L_2(\Omega ))^N$, that is invariant under the group of $t$-translations. Furthermore, $\sigma$ is compact in $C({\mathbb R};H)$.
An estimate for the $\varepsilon$-entropy of the uniform attractor $\mathscr A$ is given in terms of the $\varepsilon _1=\varepsilon _1(\varepsilon )$-entropy of the compact subset $\sigma_l$ of $C([0,l];H)$ consisting of the restrictions of the external forces $g(x,t)\in \sigma$ to the interval $[0,l]$, $l=l(\varepsilon )$ ($\varepsilon _1(\varepsilon )\sim \mu \varepsilon $, $l(\varepsilon )\sim \tau \log _2(1/\varepsilon )$). This general estimate is illustrated by several examples from different fields of mathematical physics and information theory.
@article{SM_1998_189_2_a2,
author = {M. I. Vishik and V. V. Chepyzhov},
title = {Kolmogorov $\varepsilon$-entropy estimates for the~uniform attractors of non-autonomous reaction-diffusion systems},
journal = {Sbornik. Mathematics},
pages = {235--263},
publisher = {mathdoc},
volume = {189},
number = {2},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_2_a2/}
}
TY - JOUR AU - M. I. Vishik AU - V. V. Chepyzhov TI - Kolmogorov $\varepsilon$-entropy estimates for the~uniform attractors of non-autonomous reaction-diffusion systems JO - Sbornik. Mathematics PY - 1998 SP - 235 EP - 263 VL - 189 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1998_189_2_a2/ LA - en ID - SM_1998_189_2_a2 ER -
%0 Journal Article %A M. I. Vishik %A V. V. Chepyzhov %T Kolmogorov $\varepsilon$-entropy estimates for the~uniform attractors of non-autonomous reaction-diffusion systems %J Sbornik. Mathematics %D 1998 %P 235-263 %V 189 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1998_189_2_a2/ %G en %F SM_1998_189_2_a2
M. I. Vishik; V. V. Chepyzhov. Kolmogorov $\varepsilon$-entropy estimates for the~uniform attractors of non-autonomous reaction-diffusion systems. Sbornik. Mathematics, Tome 189 (1998) no. 2, pp. 235-263. http://geodesic.mathdoc.fr/item/SM_1998_189_2_a2/