Kolmogorov $\varepsilon$-entropy estimates for the~uniform attractors of non-autonomous reaction-diffusion systems
Sbornik. Mathematics, Tome 189 (1998) no. 2, pp. 235-263

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kolmogorov $\varepsilon$-entropy of the uniform attractor $\mathscr A$ of a family of non-autonomous reaction-diffusion systems with external forces $g(x,t)$ is studied. The external forces $g(x,t)$ are assumed to belong to some subset $\sigma$ of $C({\mathbb R};H)$, where $H=(L_2(\Omega ))^N$, that is invariant under the group of $t$-translations. Furthermore, $\sigma$ is compact in $C({\mathbb R};H)$. An estimate for the $\varepsilon$-entropy of the uniform attractor $\mathscr A$ is given in terms of the $\varepsilon _1=\varepsilon _1(\varepsilon )$-entropy of the compact subset $\sigma_l$ of $C([0,l];H)$ consisting of the restrictions of the external forces $g(x,t)\in \sigma$ to the interval $[0,l]$, $l=l(\varepsilon )$ ($\varepsilon _1(\varepsilon )\sim \mu \varepsilon $, $l(\varepsilon )\sim \tau \log _2(1/\varepsilon )$). This general estimate is illustrated by several examples from different fields of mathematical physics and information theory.
@article{SM_1998_189_2_a2,
     author = {M. I. Vishik and V. V. Chepyzhov},
     title = {Kolmogorov $\varepsilon$-entropy estimates for the~uniform  attractors of non-autonomous reaction-diffusion systems},
     journal = {Sbornik. Mathematics},
     pages = {235--263},
     publisher = {mathdoc},
     volume = {189},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_2_a2/}
}
TY  - JOUR
AU  - M. I. Vishik
AU  - V. V. Chepyzhov
TI  - Kolmogorov $\varepsilon$-entropy estimates for the~uniform  attractors of non-autonomous reaction-diffusion systems
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 235
EP  - 263
VL  - 189
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_2_a2/
LA  - en
ID  - SM_1998_189_2_a2
ER  - 
%0 Journal Article
%A M. I. Vishik
%A V. V. Chepyzhov
%T Kolmogorov $\varepsilon$-entropy estimates for the~uniform  attractors of non-autonomous reaction-diffusion systems
%J Sbornik. Mathematics
%D 1998
%P 235-263
%V 189
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_2_a2/
%G en
%F SM_1998_189_2_a2
M. I. Vishik; V. V. Chepyzhov. Kolmogorov $\varepsilon$-entropy estimates for the~uniform  attractors of non-autonomous reaction-diffusion systems. Sbornik. Mathematics, Tome 189 (1998) no. 2, pp. 235-263. http://geodesic.mathdoc.fr/item/SM_1998_189_2_a2/