Kolmogorov $\varepsilon$-entropy estimates for the uniform attractors of non-autonomous reaction-diffusion systems
Sbornik. Mathematics, Tome 189 (1998) no. 2, pp. 235-263 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Kolmogorov $\varepsilon$-entropy of the uniform attractor $\mathscr A$ of a family of non-autonomous reaction-diffusion systems with external forces $g(x,t)$ is studied. The external forces $g(x,t)$ are assumed to belong to some subset $\sigma$ of $C({\mathbb R};H)$, where $H=(L_2(\Omega ))^N$, that is invariant under the group of $t$-translations. Furthermore, $\sigma$ is compact in $C({\mathbb R};H)$. An estimate for the $\varepsilon$-entropy of the uniform attractor $\mathscr A$ is given in terms of the $\varepsilon _1=\varepsilon _1(\varepsilon )$-entropy of the compact subset $\sigma_l$ of $C([0,l];H)$ consisting of the restrictions of the external forces $g(x,t)\in \sigma$ to the interval $[0,l]$, $l=l(\varepsilon )$ ($\varepsilon _1(\varepsilon )\sim \mu \varepsilon $, $l(\varepsilon )\sim \tau \log _2(1/\varepsilon )$). This general estimate is illustrated by several examples from different fields of mathematical physics and information theory.
@article{SM_1998_189_2_a2,
     author = {M. I. Vishik and V. V. Chepyzhov},
     title = {Kolmogorov $\varepsilon$-entropy estimates for the~uniform attractors of non-autonomous reaction-diffusion systems},
     journal = {Sbornik. Mathematics},
     pages = {235--263},
     year = {1998},
     volume = {189},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_2_a2/}
}
TY  - JOUR
AU  - M. I. Vishik
AU  - V. V. Chepyzhov
TI  - Kolmogorov $\varepsilon$-entropy estimates for the uniform attractors of non-autonomous reaction-diffusion systems
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 235
EP  - 263
VL  - 189
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_2_a2/
LA  - en
ID  - SM_1998_189_2_a2
ER  - 
%0 Journal Article
%A M. I. Vishik
%A V. V. Chepyzhov
%T Kolmogorov $\varepsilon$-entropy estimates for the uniform attractors of non-autonomous reaction-diffusion systems
%J Sbornik. Mathematics
%D 1998
%P 235-263
%V 189
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1998_189_2_a2/
%G en
%F SM_1998_189_2_a2
M. I. Vishik; V. V. Chepyzhov. Kolmogorov $\varepsilon$-entropy estimates for the uniform attractors of non-autonomous reaction-diffusion systems. Sbornik. Mathematics, Tome 189 (1998) no. 2, pp. 235-263. http://geodesic.mathdoc.fr/item/SM_1998_189_2_a2/

[1] Chepyzhov V. V., Vishik M. I., “Attractors for non-autonomous evolution equations with almost periodic symbols”, C. R. Acad. Sci. Paris. Ser. I Math., 316 (1993), 357–361 | MR | Zbl

[2] Chepyzhov V. V., Vishik M. I., “Attractors of non-autonomous dynamical systems and their dimension”, J. Math. Pures Appl., 73:3 (1994), 279–333 | MR | Zbl

[3] Chepyzhov V. V., Vishik M. I., “Attractors of non-autonomous evolution equations with translation-compact symbols”, Oper. Theory Adv. Appl., 78 (1995), 49–60 | MR | Zbl

[4] Chepyzhov V. V., Vishik M. I., “Non-autonomous evolutionary equations with translation-compact symbols and their attractors”, C. R. Acad. Sci. Paris. Ser. I Math., 321 (1995), 153–158 | MR | Zbl

[5] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, UMN, 14 (86):2 (1959), 3–86 | MR

[6] Chepyzhov V. V., Foias C., Vishik M. I., “Uniform attractors for non-autonomous 2D Navier–Stokes equations and estimations of their $\varepsilon$-entropy” (to appear) | Zbl

[7] Constantin P., Foias C., Temam R., “Attractors representing turbulent flows”, Mem. Amer. Math. Soc., 53:314 (1985) | MR | Zbl

[8] Chepyzhov V. V., Vishik M. I., “Trajectory attractors for reaction-diffusion systems”, Topol. Methods Nonlinear Anal., 7:1 (1996), 49–76 | MR | Zbl

[9] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[10] Sell G. R., “Non-autonomous differential equations and topological dynamics. I; II”, Trans. Amer. Math. Soc., 127 (1967), 241–283 | DOI | MR | Zbl

[11] Sell G. R., Lectures on topological dynamics and differential equations, Van-Nostrand-Rinhold, Princeton, NJ, 1971 | MR | Zbl

[12] Dafermos C. M., “Semi-flows associated with compact and almost uniform processes”, Math. Systems Theory, 8 (1974), 142–149 | DOI | MR

[13] Dafermos C. M., “Almost periodic processes and almost periodic solutions of evolution equations”, Proceedings of a University of Florida, International Symposium, Academic Press, New York, 1977, 43–57 | MR

[14] Hale J. K., Asymptotic behaviour of dissipative systems, Math. Surveys Monographs, 25, Amer. Math. Soc., Providence, RI, 1987 | MR

[15] Haraux A., Systèmes dynamiques dissipatifs et applications, Masson, Paris, 1991 | MR | Zbl

[16] Temam R., Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematics Series, 68, Springer-Verlag, New York, 1988 | MR | Zbl

[17] Chepyzhov V. V., Vishik M. I., “Evolution equations and their trajectory attractors”, J. Math. Pures Appl., 76:10 (1997), 913–964 | MR | Zbl

[18] Amerio L., Prouse G., Abstract Almost Periodic Functions and Functional Equations, Van Nostrand, New York, 1971 | MR | Zbl

[19] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo MGU, M., 1978 | MR | Zbl

[20] Eden A., Foias C., Nicolaenco B., Temam R., Exponential Attractors for Dissipative Evolution Equations, Research in Appl. Math., 37, John Wiley, New York, 1994 | MR

[21] Conway J. H., Sloan N. J. A., Sphere Packing, Latices and Groups, Springer-Verlag, New York, 1988 | MR

[22] Birman M. Sh., Solomyak M. Z., “Kusochno-polinomialnye priblizheniya funktsii klassov $W_p^a$”, Matem. sb., 73 (115):3 (1967), 331–355 | MR | Zbl

[23] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR